Accelerating Variant Interpretation with Large Reasoning Models

Benchmarking Evidence Extraction Across Leading Models

Mullai Murugan
Human Genome Sequencing Center
Baylor College of Medicine

Disclosure

I do not have any disclosures.

Accelerating Variant Interpretation: The Challenge & Large Reasoning Model (LRM) Opportunity

Genomic Testing has scaled

- More data, variants

Interpretation: Resource Intensive

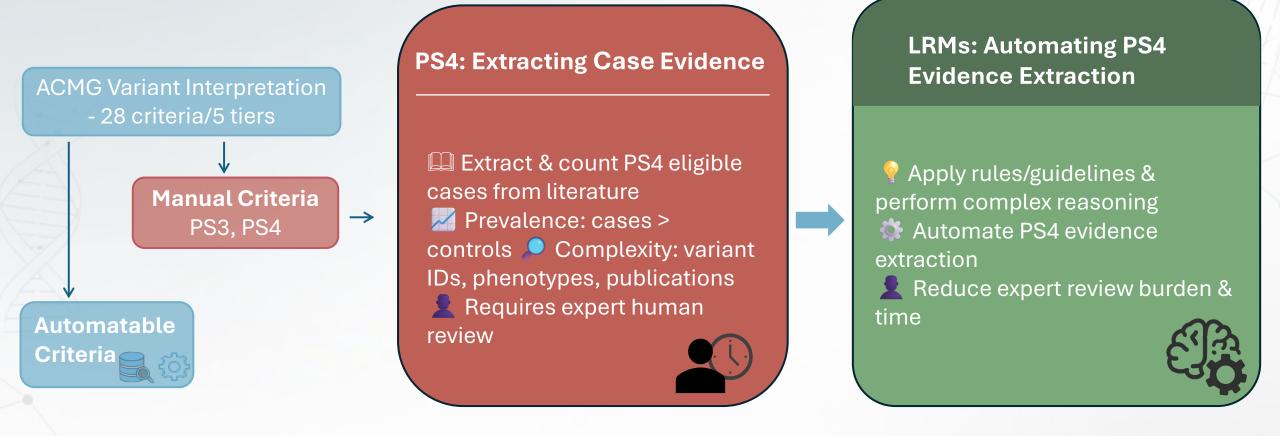
- ACMG/AMP guidelines: 28 criteria, 5 tiers ~80min for a hard variant

Automatable Criteria

- BA1, BS1, PP3: DB, In silico

Interpretive Criteria

- PS4, PS3, PP4: Literature Synthesis

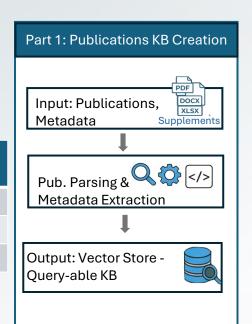


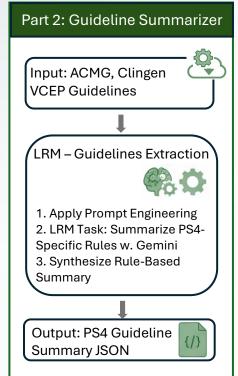
LRM: The Acceleration Engine

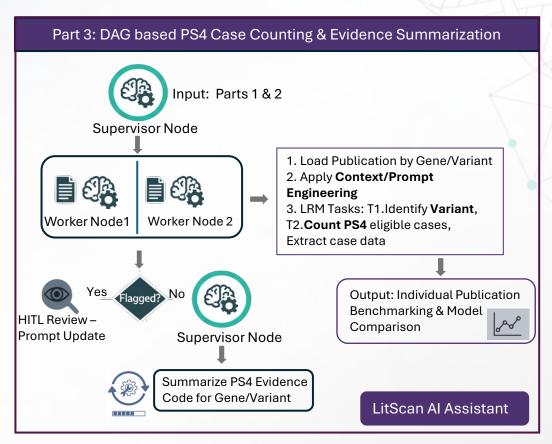
Help automate evidence extractionBoost geneticist

Boost geneticis
 productivity

Automating PS4 Evidence Extraction with LRMs

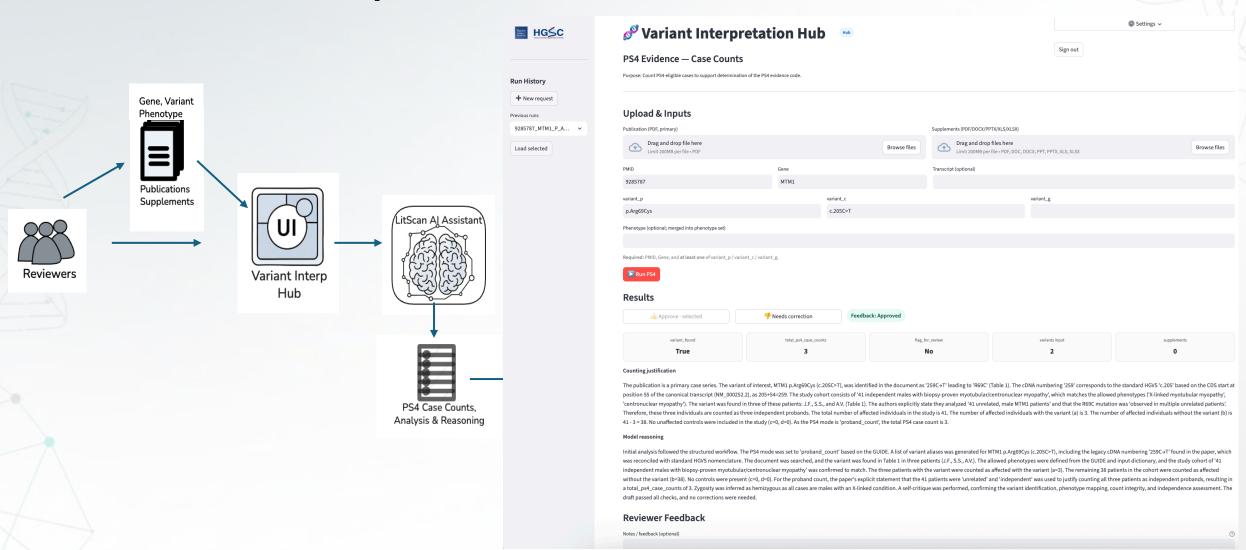

Using LRMs for Literature-Based Case Evidence Extraction (PS4 Criterion)


- Task 1 : Detect variant in publications
- Task 2 : Count cases (variant + phenotype match)
 - Extract case data, citations & reasoning
- Benchmarking against expert-curated ground truth
 - Models: Large OpenAl GPT-5, OpenAl o3, Google Gemini 2.5 Pro Small - Anthropic Claude Sonnet 4, OpenAl o4-mini
- **Goal:** Evaluate LRM utility & reliability for ACMG-guided, literature-based variant evidence extraction.


Design

Ground Truth Benchmark Dataset

Publications	281
Genes	58
Variants	128



Empowering personalized pharmacogenomics with generative AI solutions

Mullai Murugan, MS 丞, Bo Yuan, PhD, Eric Venner, PhD, Christie M Ballantyne, MD, Katherine M Robinson, PharmD, James C Coons, PharmD, Liwen Wang, PhD, Philip E Empey, PharmD, PhD, Richard A Gibbs, PhD

Journal of the American Medical Informatics Association, Volume 31, Issue 6, June 2024, Pages 1356–1366, https://doi.org/10.1093/jamia/ocae039

Variant Interpretation Hub

Benchmarking Results: Task 1- Variant Detection

7	Model	N	TP	TN	FP	FN	Accuracy	F1
	Google Gemini 2.5 Pro	281	262	13	0	6	0.979	0.988
Large	OpenAl GPT-5	281	263		1	5	0.979	
	OpenAl o3	281	262	13	0	6	0.979	0.988
Small	Anthropic Claude Sonnet 4	281	256	9	4	12	0.943	0.969
	OpenAl o4-mini	281	250	13	0	18		

Performance Metrics - Model Outcomes vs Ground Truth (N=281 publications)

Legend	
N – Total Publications	Benchmarked publications in ground truth dataset
TP – True Positive	Variant found in publication and matches ground truth
TN – True Negative	Variant not found in publication and absent in ground truth
FP – False Positive	Variant found in publication but not in ground truth
FN – False Negative	Variant not found in publication but present in ground truth

Task 1: Variant Detection - Large vs Small Model

PMID: 10559517(1998)

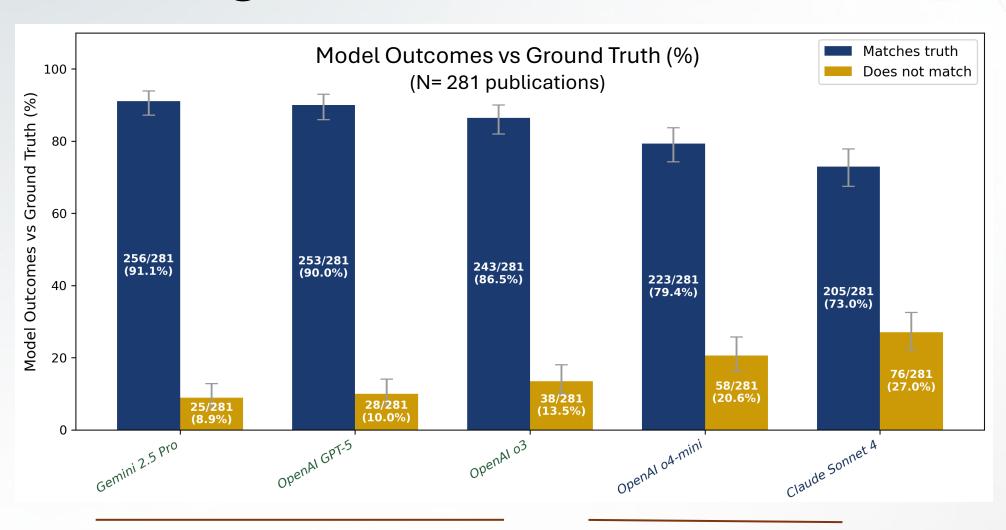
Variant: LDLR, c.1444G>C, p.Asp482His (③)

In Table1 as D461H

64Paturül (Eliforgea) ett) 4 (Small)

The protection of the particular of the protection of the protecti (htM1/49191055972) \$5 m to tetation on all all the Asset of the Asset dbgage in ireperted as cogletia gyonalignet preptitide),

11 41 44 41 Cerr Ch, g 1 a4 44 36 & Cightely activitie it of troublet the contradiction of th D461H with base change 1443 G/C (Table 1, page 312)f.


interest was not found in any form throughout the Geminit(barge)

The variant of interest, p.Asp482His (c.1444G>C), is identified in the publication using a legacy protein nomenclature, D461H, which accounts for the cleavage of the 21-amino acid signal peptide (482 - 21 = 461). The paper reports this variant as '1443 G/C', which is treated as the same molecular event. .. Table 1 (page 312) lists the 'D461H' variant as being identified in 1 family ('No.' column = 1).

Table 1 LDLR mutations identified in this study of Northern Irish familie with familial hypercholesterolaemia						
Mutation	Base change	Exon-LDLR	No.	Reference		
E80K	301 G/A	3	2	[5]		
211delG	211delG	3	1	[12]		
W66G	259 T/G	3	1	[5]		
C68Y	266 G/A	3	1	[22] abs.		
313 + 1G/A	313 + 1G/A	3	1	[23]		
C210X	693 C/A	4	5	[24]		
C163Y	551 G/A	4	4	[22] abs.		
319insA	319insA	4	1	This study		
C152X	518 C/A	4	1	[22] abs.		
D200G	662 A/G	4	1	[5]		
680delAC	680delAC	4	1	[24]		
932delA	932delA	6	5	[22] abs.		
K369X	1168 A/T	8	2	[25]		
1185delG	1185delG	8	1	This study		
D461N	1443 G/A	10	7	[25]		
G457R	1431 G/A	10	1	[5]		
D461H	1443 G/C	10	1	[22] abs.		
W462R	1446 T/C	10	1	[25]		
1778delG	1778delG	12	1	This study		
C656R	2029 T/C	14	1	[5]		
P664L	2054 C/T	14	1	[5]		
2292delA	2292delA	15	3	[26]		

doi:10.1016/s0021-9150(99)00201-4

Benchmarking Results: Task 2 - PS4 Case Counts

Tasks 1 & 2 – Detailed Model Reasoning

PMID: 24444654

√ Variant: MUTYH c.821G>A, p.Arg274Gln

0 PS4

cases

Gemini 2.5 Pro: Case Count - 0 ➤

The user wants me to perform a PS4 data extraction for MUTYH p.Arg274Gln from PMID:24444654....

- 2. **Variant Identification**: I created aliases for p.Arg274Gln (R274Q, c.821G>A) and found it listed as '821G>A, CGG>CAG, R274Q' in Supplementary Table 2 of the document.
- 3. **Phenotype Matching**: The probands in the study have colorectal cancer (CRC), which is the primary clinical outcome of 'familial adenomatous polyposis 2' (MUTYH-associated polyposis), the allowed phenotype....
- 4. **Raw Count Tally**: Supplementary Table 2 lists 1 biallelic (compound heterozygous with G396D) and 13 monoallelic probands with the R274Q variant, for a total of 14 affected individuals (a=14)...
- **5.** ****PS4 Eligibility Application**:** The crucial step was applying the GUIDE's rules for this autosomal recessive condition... Consequently, despite finding 14 affected carriers, none are eligible for PS4 counting according to the specific rules in the GUIDE. The `total_ps4_case_counts` is set to 0.
- 6. **Finalization**: ... A flag for review is set to `true` because the GUIDE's rules effectively prevent the application of PS4 in this context, which is a significant finding that may require expert review.

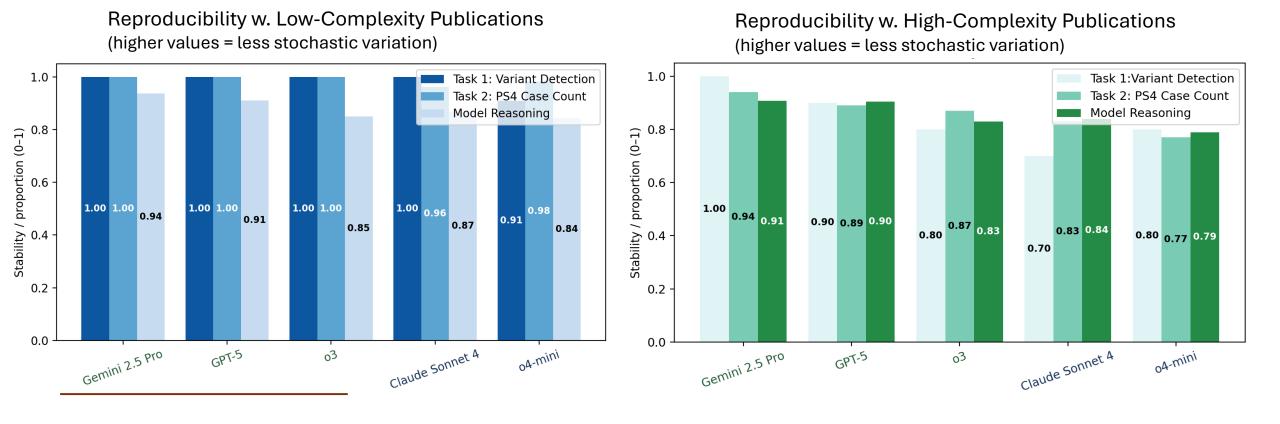
Benchmarking Results: Comparative Analysis of Model Error Patterns

Key Error Categories:

- Variant Identification
 - Difficulty with correctly identifying the variant in the publication
- Proband Counts
 - Unable to count unrelated probands only, either overcounting or undercounting cases
- Phenotype Association
 - Unable to identify or correctly link cases to phenotypes
- Guideline Interpretation
 - Incorrect interpretation or misapplication of guidelines
- Publication Complexity
 - Difficulty with processing complex/large literature
- Preexisting Literature/DB
 - Unable to identify if literature is primary case series or duplicate
- Unknown Errors

Stochasticity - Variability in LRM Outputs

Quantify effects of stochasticity on:


- 🎺 Task 1: Variant Detection
- Task 2: PS4 Case Counts
- Semantic Reasoning

Goal

- Quantify **output variability** under different publication conditions
- Compare models on their **reproducibility** and consistency
- Identify where **safeguards** are needed to manage variability

Quantifying Stochastic Variation across Publication Complexity

10 low-complexity and 10 high-complexity publications, 10 runs each

Key Takeaways

⊗ Scope

Benchmarked LRM-assisted evidence extraction for ACMG/ClinGen PS4 criterion

Findings

- Frontier reasoning models (GPT-5, Gemini 2.5 Pro, o3) achieved ~85–90% concordance with expert-curated ground truth
- Revealed distinct model-specific error profiles, highlighting the need for model-aware prompting, reproducibility safeguards, and human-in-the-loop guardrails

Next Steps

 Refine design & extend scope to other ACMG criteria (e.g., PS3, PP1) and broaden ground truth datasets

Broader Impact

Framework can generalize to reasoning over biomedical literature beyond variant interpretation

Acknowledgements

Baylor College of Medicine

Human Genome Sequencing Center

Dr. Richard Gibbs, PhD

Dr. Eric Venner, PhD

Dr. Bo Yuan, PhD

Dr. Joshi Stephen, PhD

Dr. Charul Gijavanekar, PhD

Dr. Senkot Kadirvel, PhD

Loka

Dr. Jorge Sampaio, PhD Vitor Manita Francisco Delca Pereira John Restrepo

Amazon Web Services

Patrick Johnson Alvin Richardson

murugan@bcm.edu

Appendix A- Models, Context Window, Cost

	OpenAl GPT-5	OpenAl o3	OpenAl o4- mini	Google Gemini 2.5 Pro	Anthropic Claude Sonnet 4
Context Window (tokens)	400,000	200,000	200,000	1,000,000	200,000
Knowledge cutoff	Sep 30, 2024	June 01, 2024	June 01, 2024	Jan 2025	Jan 2025
Reasoning Support	Yes	Yes	Yes	Yes	Yes
Pricing (per 1M tokens)	Input: \$1.25 Output: \$10.00	Input: \$2.00 Output: \$8.00	Input: \$1.10 Output: \$4.00	Input: \$1.25 Output: \$10.00	Input: \$3 Output: \$15.00