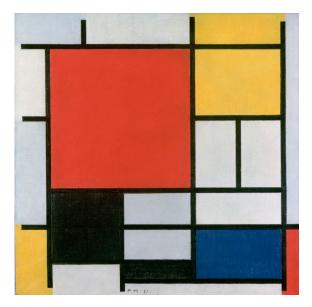


Harnessing the Power of Real-World Evidence from the Literature using Artificial Intelligence


Mark Kiel MD PhD

CSO and Co-Founder of Genomenon

2025 NASEM Genomics Roundtable - Exploring Applications of Al in Genomics and Precision Health: A Workshop

Clinical Trials vs. Real-World Evidence

Piet Modrian Composition in Red, Yellow, Blue and Black 1921

is highly controlled, with strict protocols, pre-defined endpoints, and carefully selected patient populations, ensuring a high level of purity but limiting generalizability to broader populations

Clinical Trials vs. Real-World Evidence

Jackson Pollock Number 1A, 1948 1948 is inherently more diverse and messier encompassing unstructured and semi-structured patient data from disparate real-world sources and settings like EHRs, claims data, and clinical literature

Promise of and Challenges for RWD

More Inclusive Discoveries
Improved Patient Outcomes
Accelerated Healthcare Innovation

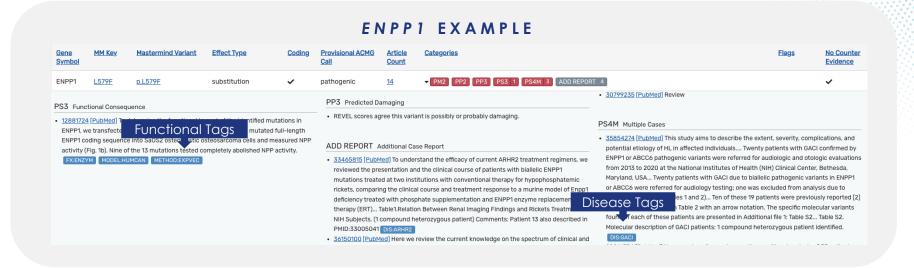
Challenges include

- data completeness
- data quality
- data complexity
- time to aggregate
- expense to access
- uncertainty of analysis

Clinical Literature is a Valuable Source of RWD

Clinical literature tells patients' stories through RWD

Precision Medicine Applications of RWD


Ideal sources for RWD for Rare Diseases and Precision Oncology

- Data breadth patient types and patient numbers
- Data depth data granularity per patient

RWE Variant Landscapes

Comprehensive ACMG-classified SNVs/indels with evidence citations, disease tags, and functional insights.

*Richards et al. 2015

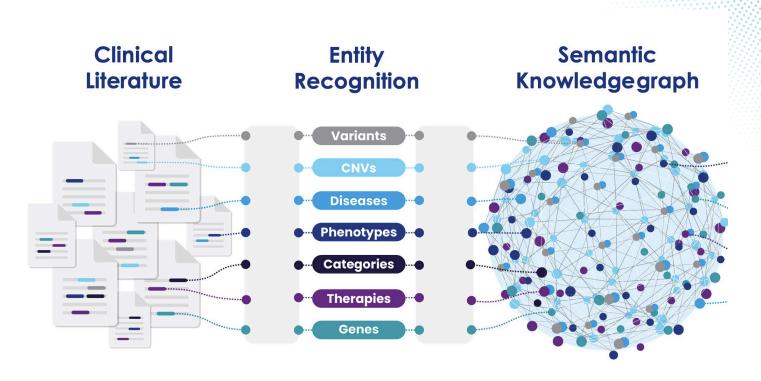
RWE Patient Landscapes

Comprehensive patient database with demographic data, genotypes, and customizable clinical details for disease insights with citations.

ABCC6 EXAMPLE

+ Customizable lab tests, treatments, outcomes, etc.

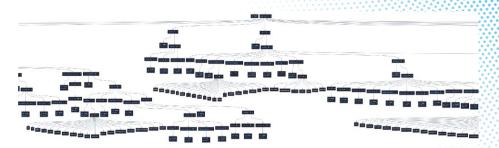
PMID	Patient ID	Age at Evaluation	Clinical Diagnosis	Phenotypes	Kidney Phenotype	Vascular Calcification	ABCC6 Variant (cDNA)	ABCC6 Variant (protein)	ENPP1 variant(s)
29713628	1	34	None	Hypertension, Kidney stones	Yes	No	c.?	p.Arg1141Ter	No
29713628	2	52	None	Kidney stones	Yes	No	c.?	p.Arg807Gln	No
31646622	3	11	PXE	Retinal angioid streaks, cutaneous lesions, asthenia, peripheral artery disease, medial calcific sclerosis	No	Yes	c.3421C>T	p.Arg1141Ter	Yes

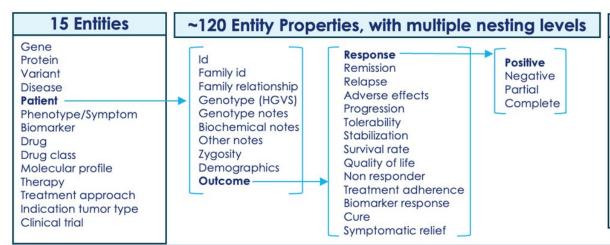

WHO WE ARE:

Genomenon provides

genomic intelligence for
clinical diagnostics and
precision therapeutic
development.

We simplify complex genetic data into actionable insights.


What is G³ (Genomenon Genomic Graph)?



How does G³ work?

Extensive schema to index all clinical literature for a complete set of entities, properties, and relationships

Every entity, property, and relationship in this schema has a model prompt associated with it.

~30 Entity to Entity Relationship Types
{Subject} {Relationship Predicate} {Object}
Clinical trial tests drug
Disease occurs in patient
Biomarker is marker for disease
Drug treats patient

What can G³ do?

Entities

Identify terms in papers and map to ontologies

Properties

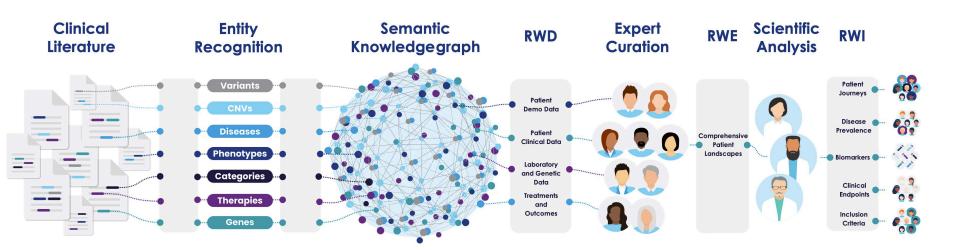
Identify traits and characteristics linked to matched entities

Relationships

Understand how terms are inter-related in articles

Databases

Output custom databases to custom specifications


Summaries

Produce natural language text summaries and answer questions

Combining Expert Curation with Artificial Intelligence

How does it all fit together?

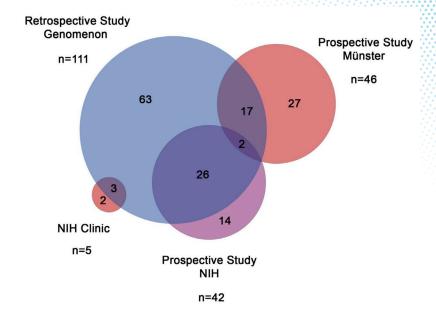
Combinatorially! Corpus, Computation, Curation

Indexed and Curated Databases of Genomic Variants

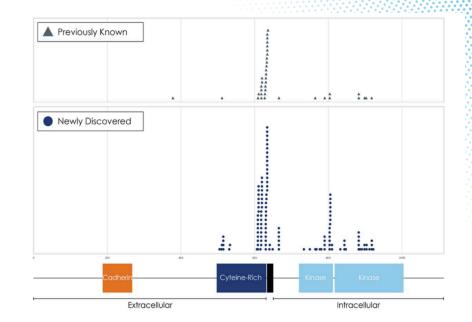
The standard in evidence-based interpretation of complex cancer profiles

Query and access curated information on variants, FDA drug labels, targeted therapies, preclinical and clinical evidence and clinical trials in over 2200 genes

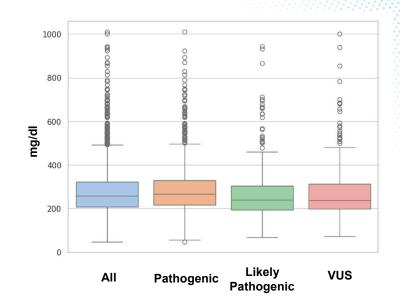
Using AI and Genomic expertise to accelerate patient diagnosis


Across ~11M full-text genomic articles, 3.7M+ supplemental datasets, and 27M+ variants including curated genomic data for pathogenicity classification with supporting evidence

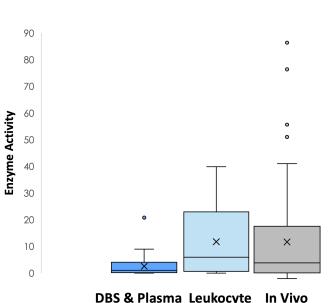
Inclusion Criteria and Disease Prevalence to Inform Trial Design and Market Strategy


Reanalyzed 1,500 ENPP1 variants and patient cases, helping to design a successful PhII trial and re-calculate GACI prevalence from 1/200,000 to 1/64,000 to help identify and diagnose more patients.

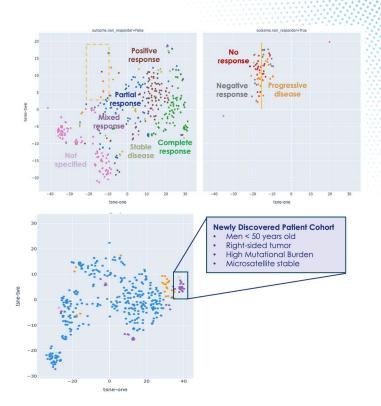
Expanded Inclusion Criteria for Regulatory Submission


Reclassified 3,800 RET variants, expanding Selpercatinib trial inclusion from 33 to 138, enabling broader patient enrollment.

Clinical Biomarkers to Influence Clinical Practice


Analyzed 42,000 FH patients, showing LDLR VUS mirror pathogenic variants, demonstrating literature-based RWE can refine FH diagnosis to diagnose more patients.

Functional Biomarkers for Regulatory Submission


Analyzed ~1,500 GLA variants, supporting higher enzyme thresholds (3-5.5%), expanding Fabry diagnosis and influencing regulatory approval to treat more patients.

Patient Stratification to Identify Therapy-Responsive Populations

Identified a 5% subpopulation of CRC patients with favorable immunotherapy response, enabling patient stratification

Newborn
Screening by
Sequencing

Automation and Optimization of Clinical and Commercial Drug Development

Drug Development Activities with Potential for Semi-Automation

Discovery

Pre-Clinical

Clinical Development

Regulatory

Commercialization

Disease Understanding

Target Identification

Biomarker Discovery

Patient Stratification

Preclinical Validation

Trial Design Planning

Protocol Feasibility

Indication Expansion

Portfolio Prioritization

Competitive Landscape

Model Validation

Target Validation

Biomarker Identification

Safety Signal Exploration

Translational Relevance

Portfolio Strategy

Orphan Indication Targeting

Trial Design

Trial Feasibility

Trial Execution

Regulatory Submissions

Payer/HTA Engagement

Initial Approvals

Label Expansions

Post-Marketing Surveillance

HTA and Reimbursement

Bridging Data

Regulatory Science

HTA Submissions

Reimbursement Support

Pricing Strategy

Economic Models

Global Market Access

Post-Launch Performance

KOL Engagement

Publications & Congress

Market Segmentation

Brand Differentiation

Launch Readiness

Post-Launch Monitoring

Scientific Communication

THANK YOU

Mark Kiel
CSO, Co-Founder
kiel@genomenon.com

