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Accelerated Genomics Ecosystem

Instruments ISVs / Cloud Platforms Industry and Research



Full-Stack Solutions to Accelerating Healthcare Breakthroughs
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BioNeMo Blueprints: Generative Virtual Screening
Models: MSA-Search, AlphaFold2, GenMol, DiffDock

Benefits

• Use generative AI to more 
efficiently explore chemical space 
to optimize molecular designs for 
multiple features simultaneously

• Accelerated NIMs allow rapid 
evaluation of large molecule 
databases to identify better drug 
candidates faster

• Test fewer molecules to identify 
virtual hits, reducing the time and 
cost of drug development



Parabricks

Multi-Omics
Alignment

High Accuracy
Variant Calling

Single Cell
and Spatial

On-Premise Cloud

RAPIDS, MONAI, BioNeMo

NVIDIA AI Enterprise

The AI & GPU-Accelerated Software Suite for Omics Analysis
Higher Accuracy, Higher Speed, Lower Cost

Boost Accuracy
High accuracy deep learning and 
pangenome alignment

Increase Speed
Experience 135x faster analysis
of WGS compared to CPU-only

Reduce Cost
Up to 50% lower compute cost
for WGS compared to CPU-only

FASTER: Giraffe

FASTER: BWA-MEM

BWA-Meth 

FASTER: Minimap2 

FASTER: STAR

DeepSomatic 

DeepVariant

FASTER: HaplotypeCaller 

Mutect2

STAR-Fusion

RAPIDS-singlecell 

VISTA-2D 

NEW: Evo2

Geneformer



Higher Speed: Germline Analysis from 18 hours to 8 minutes

CPU-only
(m5.24xlarge)

135x acceleration using RTX PRO 6000

Germline workflow runtime per whole genome
(HG002, 30x Illumina)
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Analyze Orders of Magnitude More Data with RAPIDS-singlecell
Validate in real cells to enable scientific exploration and unlock biological insights

RAPIDS-singlecell Overall Runtime
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RAPIDS-singlecell developed by the scverse

1 Million Cell Dataset
676x faster UMAP and 70x faster PCA

RAPIDS-singlecell
Introduces GPU-optimized versions of the

ScanPy library functions.



GPU-ACCELERATED Data Science
=

Includes RF!Hash Maps GNN + LLM



MONAI Multimodal
Data | Models | Agents

Radiology Agent
Chain of Thought Reasoning

Surgical Agent
Information Retrieval & Notes

Agent FrameworkData

Agents

Llama 3.2

Video Analysis

Task Models

DICOM

TEXT

EHR

VIDEO

VOICE



Vision

• Patient has an early indication of something wrong from 
routine bloodwork

• Standard phenotypic workup is done in parallel to additional
blood draw to be sent for WGS

• Pharmacological intervention is indicated by paths through 
graph(s), complementary to standard diagnosis criteria



The vast majority of diseases are multigenic 
and/or multifactorial

https://www.ncbi.nlm.nih.gov/books/NBK20363/
https://pmc.ncbi.nlm.nih.gov/articles/PMC9945947/ 
https://www.ncbi.nlm.nih.gov/books/NBK20363/
https://www.annualreviews.org/content/journals/10.1146/a
nnurev-biodatasci-102022-120818
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Variant Annotation is Common but 
Uncontextualized



Multifactorial Disease

1. Polygenicity
2. Background genomic effects (cis- or trans-)
3. Environmental effects mediated by epigenetics
4. Direct environmental effects (immunological, receptor binding, etc)

Humans do not like thinking about multifactorial causation.
Baker, C. L., & Tenenbaum, J. B. (2023). How Occam's razor guides human decision-making. Proceedings of the National Academy of Sciences, 120(5), 
e2212351120.

Duttle, K., & Inukai, K. (2015). Complexity Aversion: Influences of Cognitive Abilities, Culture and System of Thought. Economics Bulletin, 35(2), 846- 
855.







Genome graphs

Image from
embl.org

Reference 
Guided 

Assembly



• Increase accuracy and improve variant calling—particularly
across genetic variations and diverse populations

• GPU-accelerated Giraffe with single-end and pair-end support

• Equivalent results to open-source version of Giraffe

Accelerate Pangenome Alignment with Giraffe
Parabricks now supports UCSC’s Giraffe



Genome graphs

Image from
embl.org

Disease 
Specific 
Graphs



Genome graphs  Hash Maps

Credit: 
pangenome.github.io





Genome graphs  Hash Maps



Genome graphs  Hash Maps



Computational approaches are helping medical 
genomics

Accelerated Genomics (including graphs) 
Single Cell and Proteomics
Agents and Models
Drug Prediction and Modification 
Integration with imaging for testing 
Federated Learning
Knowledge Graphs



○ Dynamic storage of data
○ “Pruning” of garbage
○ More advanced clustering of disease subtypes

■ Prediction of adequate pharmacology for these subtypes

Knowledge Graphs will allow



This is the SNOMED CT graph for Breast Cancer.
SNOMED CT is a popular ontology in the US and the one that the UK

health system uses.













RAG: VectorRAG vs GraphRAG

● RAG = Retrieval Augmented Generation

● VectorRAG: retrieve top K relevant docs based on their embedding vector

○ Good enough when answer requires single doc

● GraphRAG: retrieve relevant subgraph

○ Good when answer requires multiple 

docs with related entities



GNN+LLM Graph RAG (GNN Feeds LLM)

https://arxiv.org/abs/2402.07630

(KG)

https://arxiv.org/abs/2402.07630


Validation, integrating 
experts, and garbage 

collection



GNN+LLM Graph RAG (GNN Feeds LLM)

Options:
1) Full finetune (best test

acc)
2) Lora for LLM (next

best)
3) Frozen LLM (least 

good)



Neo4j Case Study

https://developer.nvidia.com/blog/boosting-qa-accuracy-with-graphrag-

using-pyg-and-graph-databases/
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Computational approaches are helping medical 
genomics

Accelerated Genomics (including graphs) 
Single Cell and Proteomics
Agents and Models
Drug Prediction and Modification 
Integration with imaging for testing 
Federated Learning
Knowledge Graphs



Hash Maps  Models

Phenotypic Knowledge Graph



Hash Maps  Models

Phenotypic Knowledge Graph



Take Home Messages

• Changing genomic data structures will help analyze 
multifactorial genomic etiologies

• Building biological knowledge graphs of phenotypic data --
including derived phenotypes from other primary data sources
-- will help to contextualize phenotypic information

• Putting effort into the above community initiatives is likely to 
help us deliver more precise treatments faster.
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