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COURSE OF SIX LECTURES

ON THE

CHEMICAL HISTORY OF A CANDLE:

TO WHICH IS ADDED

A LECTURE ON PLATINUM.

BY

MICIAEL FARADAY, DOL, FRS,

FULLERIAN PROFESSOR OF CHEMISTRY, ROYAL INSTITUTION; FOREIGN ASSOCIATE

OF THE ACADEMY OF SCIENCES, ETC.

Delivered before & JUVENILE A TORY at the ROVAL INSTITUTION of ‘GREAT
BRITAIN during Chivistmas Holidays of 1860-1,

EDITED BY WILLIAM CROOKES, PF.C.8,

WITH NUMEROUS ILLUSTRATIONS.

LONDON :
GRIFFIN, BOHN, AND COMPANY,
STATIONERS' HALL COURT.
MDOCCLXT.

Buoyancy-Driven Convection and Diffusion

"There is no better, there is no more open door by which you can enter into the
study of natural philosophy (science) than by considering the phenomena of a
candle ... Faraday." '

T

i oriog image f USML-1 Candle
and Flame in Microgravity. (Ross
heat ¥, et al., 1991, Microgravity.

’ ‘ .Combust. Sci. Technol.
‘j k 75:155-160) -
' Air flow | by
.
Navier-Stokes

BIOPHYSIC

Image/Schematic of a Candle Flame in 1g DIFUSSIO

' ' STRESS

*This facilitates crystallization, combustion, and metallurgical research

Portetfield DM. 2002. The biophysical limitations in physiological transport and exchange
in plants grown in microgravity. J Plant Growth Regul. 21(2):177-90



Mitochondrial Stress in Spaceflight

Chromex-03 (1993 10 Days) L
89% increase (rowering Arabidopsis thaliana)

Chromex 05 (1994 14 Days)

89% increase (flowering ArabldopSIs thallana) o

Astroculture-04 (1995 11 Days)
248% increase (Dwarf Wheat vegetative)
324% increase (flowering Brassica rapa)

Collaborative Ukrainian Experiment (1998 15 DayS)
54% increase (vegetative Brassica rapa)
478% increase (flowering Brassica rapa)

~ high

ADH reé.ponse

flowering

ocd3

ow 7 ‘

vegetative : :
young OO - 0ld

=
Q
>

matrix

o

_ ADH response
= e —
= )



‘Astroculture Experiment

Light microscopy of cytochemical ADH localization in dwarf wheat spaceflight exposed (A) and
spaceflight control (B) roots. Blue color denotes ADH activity. A control for the cytochemical
stain (C) shows blue color reaction is inhibited by reversing the kinetics of the enzyme reaction


http://wcsar.engr.wisc.edu/Wheat63.JPG
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Leaf or Planar Structure
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Mitochondrial Stress in Spaceflight

Chromex-03 (1993 10 Days) o
89% increase (rowerlng Arabidopsis thallana)

Chromex 05 (1994 14 Days)

89% increase (flowering ArabldopSIs thallana) o

Astroculture-04 (1995 11 Days)
248% increase (Dwarf Wheat vegetative)
324% increase (flowering Brassica rapa)

Collaborative Ukrainian Experiment (1998 15 DayS)
54% increase (vegetative Brassica rapa)
478% increase (flowering Brassica rapa)
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Npj | microgravity

www.nature.com/npjmgrav

M) Check for updates |

ARTICLE OPEN
Meta-analysis of the space flight and microgravity response of
the Arabidopsis plant transcriptome

Richard Barker(®', Colin P. S. Kruse®, Christina Johnson®, Amanda Saravia-Butler*®, Homer Fogle (5%, Hyun-Seok Chang (2,
Ralph Maller Trane’, Noah Kinscherf(3)', Alicia Villacampa®, Aranzazu Manzano®, Ratl Herranz (5, Laurence B. Davin (7,
Norman G. Lewis (37, Imara Perera (3%, Chris Wolverton (3'", Parul Gupta'?, Pankaj Jaiswal (3'%, Sigrid 5. Reinsch (&%,

Sarah Wyatt(®'* and Simon Gilroy @' =

Spaceflight presents a multifaceted environment for plants, combining the effects on growth of many stressors and factors
including altered gravity, the influence of experiment hardware, and increased radiation exposure. To help understand the plant
response to this complex suite of factors this study compared transcriptomic analysis of 15 Arabidopsis thaliana spaceflight
experiments deposited in the National Aercnautics and Space Administration’s Genelab data repository. These data were
reanalyzed for genes showing significant differential expression in spaceflight versus ground controls using a single common
computational pipeline for either the microarray or the RNA-seq d Such a standardized approach to analysis should greatly
increase the robustness of comparisons made between datasets. This analysis was coupled with extensive cross-referencing to a
curated matrix of metadata associated with these experiments. Our study reveals that factors such as analysis type (Le., microarray
versus RMA-seq) or environmental and hardware conditions have important confounding effects on comparisons seeking to define
plant reactions to spaceflight. The metadata matrix allows selection of studies with high similarity scores, i.e, that share multiple
elements of experimental design, such as plant age or flight hardware. Comparisons between these studies then helps reduce the
complexity in drawing conclusions arising from comparisons made between experiments with very different designs.

npj Microgravity (2023)9:21 ; https://doi.org/10.1038/541526-023-00247-6
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e Ground analog:Flight experiment
e Flight:Flight experiment
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Pairwise GLDS comparison

Supplementary Figure 1. Pairwise similarity scores of spaceflight-to-spaceflight,
spaceflight-to-ground analog and ground analog -to-ground analog studies.
Similarity scores were drawn from the similarity matrix in Supplementary Data Table 2.
Orange, Flight mission study vs ground analog study: Blue, flight mission vs flight
mission; Green, ground analog study vs ground analog study. Note, in this analysis,
spaceflight studies are most similar to other spaceflight studies and least similar to ground
analog experiments, which in turn are most similar to each other.
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Fig. 4 Graphical representation of metadata related to tissues, assay type and flight vehicle. The specific assay and tissue types for each
dataset are indicated with network dustering based on hardware. See Supplementary Data 1 and 2 for the Matrix driving this visualization.
Mote the hardware used to analyze plant response to spaceflight often defines the types of tissue that are available and so these two variables
are often linked. Purple color circles represent RNAseq analysis of wild-type Col-0 plants, shades of blue represent other WT ecotypes, the pink
circle represents RNA-seq analysis performed en mutants. The size of circles is a qualitative representation of the amount of differentially
expressed loci relative to other genetic varieties used during that study. Ecotypes: Col Columbia, Cvi Cape Verde Island, Ws Wassilewskija, Ler
Landsberg, Col-0 + Ws mixed sample 80% Ws and 20% Col ecotypes. Genotypes: WT wild-type, argl altered response to gravity 1, hsfa2 heat
shock transcrption factor A2, atm] ataxia-telanglectasia mutated 1, phyD phytochrome D, Hardware: BRIC Biological Research in Canister, EMCS
European Modular Cultivation Systern, VEGGIE Vegetable production systern, SIMBOX SIMBOX incubator system, ABRS Advanced Biological
Research System. An interactive version of this visualization is available at: https2//gilroy-glik. botany.wisc.edu/a/sense/app/20aa802b-6915-
4b1a-87bd-c029a1812e2b/sheat/6241e7 12-23c5-4c63-9210-205c 74369947 /state/analysis.



2 Sources of Mitochondrial Stress in
Spacefl’ight |

Direct Radlatlon Induced B|ochem|ca| Damaqe

HydronS|S>ROS Qg6

Direct lipid peroxidation of I\/I|tochondrlal
Mitochondrial DNA Damage
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Buoyancy-Driven Convection and Diffusion
Indirect Biophysical Diffusion Stress
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RESEARCH ARTICLE

Advance access publica

Volume 183
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November 85, 2020 ARTICLE | VOLUME 183, ISSUE 5, P1185-1201 E20, NOVEMBER 25, 2020

L EL LI S 288D . 2% '_  Comprehensive Multi-omics Analysis Reveals Mitochondrial

Stress as a Central Biological Hub for Spaceflight Impact

Willian A. da Silveira ** » Hossein Fazelinia ** « Sara Brin Rosenthal ** « ...
Xiaohua Lei'*, Yujing Cao'-*, Baohua Ma2, Yunfang Zhang’, Lina Ning', ; : \ Christopher E. Mason 2* » Sylvain V. Costes 2 « Afshin Beheshti & 2

Jingjing Qian'-?, Liwen Zhang'-*, Yongcun Qu'-®, Tao Zhang”, Dehong Li°®, Qi Chen', A\ Show footnotesDOI: https:idoi.org/10 1016/ cell 2
Junchao Shi ', Xudong Zhang', Chiyuan Ma', Ying Zhang
and Enkui Duan' *

Development of mouse preimplantation embryos in space

' [ « Show all au

ABSTRACT

‘The development of life beyond planet Earth is a long-standing quest of the human race, but whether
normal mammalian embryonic development can occur in space is still unclear. Here, we show
unequl\'omll)' that Pmlmplanlalmn mouse embryos can develop in space, but the rate nllbl.]slnq-'st
formation and tocyst quality are compromised. Additionally, the cells in the embryo contain severe
DNA damage, while the genome of the blasto. developed in space is globally hypomethylated with a i J he tronaut data to date utilized for analysis
unique set of differentially methylated regions. The developmental defects, DNA damage and epigenetic

abnormalities can be largely mimicked by the treatment with ground-based low-dose radiation. However,
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* Multi-omics analys chniques with NAS

. . . L - tion driving light health risks
the exposure to simulated microgravity alone does not cause major disruptions of embryonic development, h =

drial dysfunction during
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™ Check for updates

J. Tyson McDonald™*, JangKeun Kim®2*2, Lily Farmerie ®**32,

Meghan L. Johnson®*?, Nidia S. Trovao @%, Shehbeel Arif ®57, Keith Siew ©°,
Sergey Tsoy®, Yaron Bram?, Jiwoon Park ®2, Eliah Overbey ®2, Krista Ryon?,
Jeffrey Haltom™, Urminder Singh™, Francisco J. Enguita®2,

Victoria Zaksas®'*'*, Joseph W. Guarnieri'®, Michael Topper'®,

Douglas C. Wallace'®'¢, Cem Meydan ®2, Stephen Baylin® ', Robert Meller",
Masafumi Muratani ®''?, D, Marshall Porterfield ® 29, Brett Kaufman ®**,
Marcelo A. Mori®2'?2, Stephen B. Walsh®, Dominique Sigaudo-Roussel®?,
Saida Mebarek®, Massimo Bottini®®, Christophe A. Marquette?®®,

Eve Syrkin Wurtele™?, Robert E. Schwartz ® ®, Diego Galeano ® 2%,
Christopher E. Mason ®2, Peter Grabham®™** & Afshin Beheshti ® %%

Our previous research revealed a key microRNA signature that is associated
with spaceflight that can be used as a biomarker and to develop counter-
measure treatments to mitigare the damaee cansed by snace radiation. Here.

www.nature.com/scientificreports

scientific reports

M) Check for updates

OPEN Aging and putative frailty

biomarkers are altered
by spaceflight

Andrea Camera®>*®, Marshall Tabetah®**, Veronica Castafeda®*®, JangKeun Kim**,
Aman Singh Galsinh®, Alissen Haro-Vinueza®, lvonne Salinas’, Allen Seylani®,
Shehbeel Arif*!!, Saswati Das, Marcelo A. Morit®®, Anthony Carano®,

Lorraine Christine de Oliveira'*'%, Masafumi Muratani'"*?, Richard Barker®,

Victoria Zaksas®"*, Chirag Goel*, Eleni Dimokidis®*, Deanne M. Taylor?**%, Jisu Jeong®®,
g 4 4 2 {227

Identification and validation of multi-omics frailty biomarkers

Leading the project

in human spaceflight
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2 Sources of Mitochondrial Stress in
Spacefl’ight |

Direct Radlatlon Induced B|ochem|ca| Damaqe

HydronS|S>ROS Qg6

Direct lipid peroxidation of I\/I|tochondrlal
Mitochondrial DNA Damage




Richard Barker', Adam Escobar?, Christine Escobar?, Aubrie O’Rourke?, Gioia Massa?, Raymond Wheeler3,
Barbara Demmig-Adams?, Jennifer Mortimer®, Mathew G . Lewsey, D% and Marshall Porterfield"
"Pu due, 2 Space Lab, 3NASA, 4CU Boulder, 5La Trobe University, °The university of Adelaide

PLANTS FOR SPAC 4 VIWDJUVU L
LA TROBE R Lt : UNIVERSITY

UNIVERSITY ARC CENTRE OF EXCELLENCE

Exploration Research and
Technoloay Prourams

Goal: Investigate the short-term effects of the Lunar surface environment
on model space crops.

Objectives: We will grow model crops in Earth and on the lunar surface and
use remote monitoring technology to identify phenotypic differences and will
analyze returned samples to identify any biomolecular differences.

Petri plate
(NASA
APEX05)

Pitateion W

PRE-DEPLOYMENT: LEAF-HLS
integration, launch, ~3 month NRHO
loiter, Orion rendezvous, crew & LEAF

BEHL‘BW’E NT: Crew unstow LEAF, e &
egress to Lunar surface, deposit g i

s

Arabidopsis thaliana (Wild type Col-0 variety):

* Iswell-studiedto this mission due to its well characterized
genome.

+ This has and it a useful tool to help us understandthe genetic
response of plantsto the space environment.

+ Smallsize and short growth cycle allow for compact experimental
design which is often essential requirement for bioastronautics
missions.

+ Asaplantmodelorganism, Arabidopsis can help study the effects
of microgravity on plant development, growth, and stress response.

LEAF at safe distance from vehicle

INITIALIZATION: Crew unfold solar
panels, LEAF powers ON &

conducts self-checks, crew water
seeds with plunger when signaled

SURFACE SCIENCE: LEAF

Pfe“a‘"late hasa) controls & monitors environment
— & plant growth for remainder of
iv- " Lunar Dax
1 SAMPLE RETURN: Crew preserves
= | t portion of seedlings with fixative,
r‘ e Wb retrieves sample container, Data

ascends on HLS, boards Orion,

Copction/p ssi ST e

B S ; l
&

®

geAtlelrlgLsEt%lgl:rLtcSIS P d dli

: Preserved seedlings

Brassica rapa (Wisconsin Fast Plant AstroPlant variety): o recovered, frozen, distributed, anals zegd

« Specifically bred for space research, with a fast growth rate and 2 z 2 1
compactsize. [/ R

« Easyto grow and maintain in controlled environments, such as %‘iﬂ‘{ﬁﬁ&:ﬁ% :

v

SO

S NG

g

those found on the moon. ’\,

* Asarelative of Arabidopsis, Brassica rapa can provide T
complementaryinsights into plant biology in space.

*  While also being more robust and adaptable to K12 education

programs.

Systems Biology guiding the design of new exploration environments

Upon splashdown to Earth, the Space-Exposed Reaction Unit (SRU) will be retrieved and transferredto a boat, where it will be immediately
frozen to preserve the samples. The frozen plant samples from both flight and ground units will then be shipped to NASA's GeneLab for
further analysis.

Multi-Omics Analysis

¢ Bulk Transcriptomics: GenelLab will conduct bulk RNA sequencing to identify differentially expressed genes and pathways.

* What are the major stressors that may influence plant
health, gene expression and biomassyields on the lunar
surface?

*  What questions might we want to ask of the data that is
created by the sensors?

| v tompastures g —

— "‘) 3

Primary carbon metabolism

Atmospheric CO;-

Photosynthasis

Transpiration

Giycolysis

*  What questions might we want to ask of the data that is * Microbiomics: Kennedy Space Center (KSC) will perform microbiome analysis to investigate changes in microbial communities =
created by the returned samples? associated with the plants. o E 1 m
R ﬁg%i‘ *  What parallelground control experiments could be used * Single Cell Transcri ics and P ics: La Trobe University will conduct single cell RNA sequencing and proteomic analysis to N % 0, +H=Cop o
to provide additionalinsights into the samplesreturned reveal cellular heterogeneity and molecular responses at the individual cell level. Ambosct L
Wolffia australis: during the mission? Specialized Analysis o e
« Smallsize and simple growth habits, making it easy to cultivate in * What datais needed to help you model the yeilds of ¢ Cell Wall Analysis: University of Adelaide will investigate changes in plant cell wall composition and structure. DNt
space. future astro-agroecosystems? * Regulatory Network Modeling: University of Colorado and La Trobe University will jointly develop regulatory network models to predict ‘Qm\m‘\ prisisit

Swun Coze

* How might radiation effect the organisms?
How might the exploration atmosphere effect crop

key transcriptionalregulators and their targets.
Data Integration and Systems Biology

Ability to thrive in a variety of environments, including
microgravity.

* Potential to serve as a bioindicator for environmental stressors yields? « Identify key nodes and edges in the regulatory networks
and radiation effects. * What methods can be used to identify and quotative 84 * Reconstructmolecular pathways and networks
phenotypes?

ﬁ « Predict functional outcomes and phenotypic responses
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- Purdue Networkimg Conference 20, .-




mass balance components energy balance components

ECOI’W

The Challenge of Spaceflight for Plants. co, R g
e Biophysical systems on Earth are dependent on gravity for 0,
growth and development. H,0 \J_
e Spaceflight introduces unique biophysical factors like altered M
gravity and radiation. |

e In Low Earth Orbit (LEO), the ISS is partially shielded, allowing |
focus on microgravity effects.

stomata

Thylakoid

Thylakoid

membrane
Stroma
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lumen

. . . . T Granum
Microgravity and lunar gravity can have direct and indirect effects. (stack
of thylakoids)
- - - . . . 3H*
o Indirect effects include biophysical diffusion stress at the * o by ATP % ADP+B)
. g . ¥ Linear electron yclic electron 10
membrane boundary layers, limiting transport of metabolites/by- transfer transfer

products. This can lead to thermal and redox limitations.
e Hardware and nutrient delivery configuration can alter the

homeostatic end point equilibrium. 5y Pside
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; : membrane

L ] 1 I
Photosystem I Cytochrome bgf Photosystem | ATP synthase




Study Focus: Arabidopsis thaliana and GenelLab Data

Hypothesis: Biophysical diffusion limitation in spaceflight will induce photorespiration in photosynthetic tissues and hypoxic
responses in roots.

Study Aims: Identify altered genes/pathways, disentangle light/atmospheric effects using different hardware configurations (BRIC vs.
ISS ambient), and compare light/dark responses.

Thylakoid membrane

Lumen

e Arabidopsis thaliana is a model organism for spaceflight studies due to its small size, rapid life cycle, and characterized genome.
e The NASA Open Science Data (OSD) repository provides valuable datasets for investigating Arabidopsis Molecular responses.
e This study performs a meta-analysis of RNA-seq data from seven Arabidopsis spaceflight studies from the OSDR.
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FLT contrasting GC. ’

Red denotes +1 (upregulation) i
Blue denotes -1 (downregulation). [




Multilayer Stress Pattern Recognition

Auto-encoder input: 85 stress response assays from GEO

Hidden processing layer: “Physiospace” as described by Esfahani et al., (2022)
Auto-decoder output: 20 dimensional stress space model

Application: |dentification system for 20 distinct stress groups

’il . 0;0 0,12 0;4 | 0;6 0]8 1|.0 | Auto_decoder
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BIOASTRONAUTICS

Next generation transistion from transportation to human habitation.
ENDURANCE AND RESILIANCY: Human health, agriculture, and environmental systems.

CHALLENGE 1. RADIATION (low earth orbit<DEEP SPACE)
CHALLENGE 2. DISTANCE

Human Spaceflight Health Sustainable Life Support for
Countermeasures Exploration & Habitation
« Food and nutrition « Food and nutrition
« Radiation « Space habitation agriculture
« Altered gravity « Bioregenerative tech for life support
 Isolafion « Plant and crop production in space

« Spacecraft environment

2 « Science and spaceflight hardware
+Human psychology and performance

* Materials science program

“ ..... e
*@W THE YEAR AHEAD |

T%M ;

‘ GenelLab . [ €&
Expar



"Our planetis alonely speckin the great enveloping
cosmic dark. In our obscurity, in all this vastness, thereis
no hint that help will come from elsewhere to save us
from ourselves.”

CARL SAGAN
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Recirculating hydroponics (NFT) works for a wide range of crops,
including rootzone crops. Trees and shrubs?

Yields for many speC|es essentlally limited by Ilghtlng 2- 4 X record
yields obtained with wheat and potato. , |

"1 g dry mass / mol PAR close to upper limit for light converS|on it s
Some. crops can be affected by ethylene as low as 40 ppb
Approximately 20 m? plants can provide O, for one human

Approxmately 50 m2 of plants (crops) can provide food for one
human



Mouth Velocity Cycle
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Gravity and Human Respiration: Biophysical
Limitations in Physiological Transport and
Exchange in Spaceflight

Department of Mechanical and Aerospace Engineering, Utah State University,
Logan, UT,

2Department of Molecular Pharmacology and Physiology, University of South
Florida, Tampa, FL, United States.

3Human Healthspan, Resilience, and Performance, Institute for Human and Machine
Cognition, Pensacola, FL, United States.

4Department of Agricultural and Biological Engineering, Purdue University, West
Lafayette, IN 47907

SMolecular Medicine Program, Division of Occupational Medicine®, The University of
Utah, Salt Lake City, UT 84112

'Department of Occupational Medicine, Billings Clinic Bozeman, Bozeman, MT
59718

8Department of Philosophy, Purdue University, West Lafayette, IN 47907
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Mitochondria Dysregulation Across All Species During Space Flight: Ongoing work
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Army, Navy, Air Force, and the foundations of BioAstronautics

* Royal Navy. Captain James Cooke. Endeavor Voyage (1768-1771)
« Countermeasures for scurvy: Sanitation/ventilation in crew's quarters. Nutritional countermeasures:

diet that included cress, sauerkraut, and a kind of orange extract.
« Shelf life of Vitamin C in the ISS is months not years.

A\ US NAVY. 1958, submarine development, working on different cabin-ecology designs. Biologist Jack
) Myers, University of Texas, “the use of plants to regenerate air in a closed ecological system, such as

that of a space cabin.”
» This research was used by submarine engineers to improve the “space flight under sea.” The use
of “ecological systems for underwater vehicles” later became the norm in spaceship engineering.

US Army. 1959, Project Horizon. Study for a scientific/military base on the Moon produced by Army
Ballistic Missile Agency (ABMA later become NASA Marshall Space Flight Center). Included farming
and controlled ecological life support.

US Air Force. May 1961, The Lumex Project. Just as Kennedy had decided that NASA should put an
American on the moon, the US Air Force released a secret report, summarizing the result of years of
planning to place a military base on the moon by 1967.




1959 study for a scientific/military base on the
Moon produced by Army Ballistic Missile Agency
(ABMA later become NASA Marshall Space Flight

Conter Project Horizon

Dr. Wernher von Braun appointed Heinz-Hermann
Koelle to head the project, "all Technical Services
of the Army participated in the investigation."

1.0k

The report begins by emphasizing what the
Pentagon saw as the immediate and overwhelming
need to beat the Soviets to the Moon: “The political
implications of our failure to be first in space are a
matter of public record... From the viewpoint of
national security, the primary implications of the
feasibility of establishing a lunar outpost is the
importance of being first.”

Includes plans for “space farming” and “closed
ecological life support.”

US Army Quartermaster Hydroponics Farming for
USAAC (USAF). Wake Island, Pacific Theater



USAF-Bioastronautics and Aerospace Medicine

June 14, 1949, The first mammal in space was Albert II, a rhesus monkey.
1951. Physics and Medicine of the Upper Atmosphere. USAF School of Aviation Medicine, Randolph Air Force Base

October 4, 1957 — Sputnik Event!

November 3, 1957 - Liaka
1958: Physics and Medicine of the Upper Atmosphere and Space. USAF, Aviation Medicine, Randolph Air Force Base

May 28, 1959, Able & Baker
April 12, 1961 — THE FIRST MAN! Yuri Gagarin
May 5, 1961 — First American, Alan Sheppard (Apollo 14)
1964: “3r9” International Symposium on Bioastronautics and the Exploration of Space. Medical Division of the USAF
Systems Command, Brooks Air Force Base, Texas.

Controlled Ecological Lite Support

1968: Forth International Symposium on Bioastronautics and the Exploration of Space. Aerospace Medical Division

(AFSC), Brooks Air Force Base, Texas 15t BLiSS Habitat
July 16, - July 24, 1969 — Apollo 11 Armstrong goes for a walk! He—o
April 19, 1971, the Soviet Union first space station, Salyut. EUNAR PALACE S
April 12, — April 14, 1981. STS-1 first orbital spaceflight. ‘
A November 2, 2000. ISS First Crew to Reside on Station
f S October 15, 2003, First Chinese Man, Yang Liwei AN | .
3 May 10, 2017. Beijing Lunar Palace 1 Ty = | ‘
April 29, 2021 TianGon Station April 6, 2016, St Mouse embryology

January 3, 2019. 15t plant growth on the moon



Lunar Palace 1: China's One-Year Mock
Moon Mission in Pictures

By Space.com Staff published May 17, 2018

0000060

Taking the Oath

 LUIAR PALACE 1

Xinhuaflu Huanzong/Getty

In May 2018, China wrapped up a yearlong mission inside "Lunar Palace 1," a
Beijing facility designed to help the nation prepare to but boots on the moon.
See images of the experiment here. ( ) Here: Four
volunteers take the oath in front of Lunar Palace 1, a facility for conducting bio-
regenerative life-support systems experiments key to setting up a lunar base, at
the Beijing University for Aeronautics and Astronautics (BUAA) on May 10, 2017.
A ceremony was held in the BUAA that day as eight volunteers in two groups
started a 365-day experiment in Lunar Palace 1.

S

Xinhua/Luo Xiangguang/Gerty

Volunteers work in the cabin at Beihang University in Beijing on Jan. 26, 2018.
Two male and two female students from Beihang University, the second group
of volunteers staying in Lunar Palace 1, completed the second phase of its 365-
day on-ground experiment that day, setting a world record for the longest stay
in a self-contained "cahin.” The first group of volunteers, who had previously
stayed in the cabin for 60 days, re-entered the cabin to replace the second
group, starting the third and final phase, which lasted 105 days. The experiment]
was designed to see how the Bioregenerative Life Support System, in which
animals, plants and microorganisms co-exist, works in a lunar environment, as
well as the physical and mental conditions of humans in such an environment.



China builds Mars simulation in similar
desertlandscape to prepare for

exploration

By Reuters

MORE ON:
CHINA

Chinese hackers infiltrated US

Ambassador to China’s emails:

report

Henry Kissinger, 100, meets Xi
Jinping amid tense US-China
relations

Elite IRS whistleblowers are
bravely standing up to the
Bidens, DOJ

Democrat asks ‘who cares’ if
Hunter Biden and Gal Luft got
money from Chinese firm

facilities.

June 15, 2021 | 11:54am | Updated

China has built a “Mars Camp” in Lenghu Town of northwest
China's Qinghai Province to simulate the environmental
conditions on Mars, as part of China's Mars exploration
preparation.

The town is known as China's "Mars Camp” due to its eerily
eroded desert landscape that resembles the surface of the
red planet. The red rock area of the Qaidam basin in western
Qinghai has heen dubbed “the most Martian place on Earth”
as experts claimed that the landscape, rocks, sand, and
even the temperatures are similar to those on the Red
Planet.

The simulation camp was launched in the town in 2019 with
a base designed as a place for space enthusiasts and
professionals to get a better understanding of Mars with
immersive experiences in the simulation environment.
Covering 1,734 acres, the “Mars Camp” consists of a tourism
center, a Mars community, a simulation base and other

Relying on characteristic resources, the local authorities are developing the service industry and moving
towards a new pattern of integrating scientific research, popularization of science, scientific education and

cultural tourism.

https://youtu.be/6 WGRtKXRQzk
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Validated and compared
using background from:
Measuring and modelling
respiration... Budko et al.,
(2013)

Xin et al. (2013) A real-time, non-invasive, micro-
optrode technique for detecting seed viability by
using oxygen influx. Real-time monitoring
capability with 1-minute resolution, Detection
limit: 5 pmol O, min™

Enables correlation of OCR with specific
developmental events. Early seed germination
rates for Brassica rapa only, validate/confirm B.
rapa model using Budko et al.

Source: 355454016880920.pdf (tue.nl)
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https://pure.tue.nl/ws/portalfiles/portal/3790242/355454016880920.pdf

Seed coat (testa)

Cotyledon
Epicotyl Embryo

Hypocotyl

Measuring and modelling
respiration using
Budko et al., (2013)

L~

Endosperm (nutrients)

Radicle

Seed OCR model was integrated into
an environmental simulation based on
the LEAF payload volume and the
performance of the earth normal (EN) measurements
and exploration atmospheres (EX). ' ' '
Simulation integrates the physiological
seed OCR as physical drivers of the
atmosphere. The resulting LEAF
Chamber Seed Germination Redox
(LCSGR) Model was developed to
integrate a gravity dependent diffusion
model based on humidity and changes
in water bioavailability in microgravity
that can be toggled to simulate chamber
convection. This suggests that the
microgravity diffusion model can be
tested in real-time in reduced gravity
environments. We call this the “fan
test.”

Source: 355454016880920.pdf (tue.nl) 0 @0 6 8 20 40 60 80

time sample time sample



https://pure.tue.nl/ws/portalfiles/portal/3790242/355454016880920.pdf
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Seed Germination O; Consumption Model

Interactive biophysics simulation for closed-environment life support systemns
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Temperature-dependent respiration [y model)
Species-specific allometric scaling
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Time-varying respiratory quotient (RG]

Transport Physics:
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Water film diffusion resistance

Ideal gas law for chamber dynamics
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Seed Germination O, Consumption Model

Interactive biophysics simulation for closed-environment life support systems

Chamber Parameters

Atmaosphere Type
Exploration (56.5 kPa, 16.5% O:)
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Model Features

Physiological Models:

|

Mixed Culture (Both Species)
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Diffusion Model
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Diffusion Model
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Multi-phase OCR (imbibition, activation, growth)
Temperature-dependent respiration [y model)
Species-specific allometric scaling

Dz=limitation feedback cn OCR

Time-varying respiratory quotient (RG]

Transport Physics:

Boundary layer O; depletion

Water film diffusion resistance

Ideal gas law for chamber dynamics
Mars ve Earth atmospheric pressura

B. rapa germination compromised at t = 0.0 hours {p0:z < 10%)
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Modelling respiration using
Budko et al., (2013)
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Seed Germination O, Consumption Model

Interactive i \ for closed life support systems

Chamber Parameters

Atmosphere Type
Exploration (56.5 kPa, 16.5% Oz)
Chamber Volume: 20 L
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“when you cu‘r into ‘rhe presen’r ’rhe fu’rure Ieoks ou’r”
Jack Wh|’re '



Professor of Ag & Biological Engineering at Purdue University
Chief of Science, Art and Engineering with Elevated BioAstronautics

He has been doing space biology research for 30+ years. His primary focus is on understanding the
biophysical microgravity environment at the cellular and whole organism levels, including: (1) biomedical
countermeasures, (2) bioregenerative life support technology, and (3) controlled environment agriculture for
long-duration human habitation. His work in gravitational and space biology includes cell signaling,
biophysical limitations in microgravity, plant nutrient delivery technology, and biomimetic sensors.

He has spaceflight work has focused on plant root system performance in microgravity. His work was first to
show mitochondrial stress in spaceflight environments in a series of microgravity plant growth experiments.
He also worked on hydroponic technologies, and early spaceflight experiments with LED lighting systems at
the Controlled Ecological Life Support System program at Hanger L (Kennedy Space Center, Florida). He
has led in the area of computational biophysics and the application of nanotechnology

and microbiosensors in space research satellite systems.

hall served as Division Director for Space Life and Physical Sciences at NASA headquarters (2011-
2016, Washington, D.C.), overseeing the Human Research, Physical Sciences, and Space Biology

4 Programs. These programs focused on science for future exploration by leveraging advancements in the

new systems informatics omics era, including establishing the GeneLAB Open Science program; the
original Twins Study; 1YM; Cold Atom Lab; MaterialsLab & SporeSat MicroSatellite.

His work includes 100s of peer reviewed manuscripts and publications, and invited talks worldwide. He has
received numerous awards in his career and was recently recognized as one of the top 2% of influential
researchers in his field by the Stanford survey. He has served his peers as the President of the American

Lt 2 Society for Gravitational and Space Biology, and as the President for the Institute for Biological

7 Engineering.



The total pressurized volume of the ISS.is approximately
1,000 m”3. An average gas release co2 concentration
(0.0022 m”3) would lead to an increase in the gas fraction
across the total volume of the ISS of about (0.0022 m”3
CO2 /1000 m”3 total) = 0.0000022, or 0:00022%.

We can now recalculate the diffusion speed and time
using the revised concentration differential.

S e Substituting the new concentration difference (0.0000022)
over the length of the module (8.5 m), the diffusion speed
would be approximately 0.0000000041 m*3/s.

Calculating the time it would take for all of the CO2 to L&
_diffuse out of the module: 0.0022 m”3 / 0.0000000041
m”3/s gives us about 187 days.

.~ This revised calculation underscores the importance of “

ventilation and active‘air circulation within the ISS to
maintain a safe and comfortable environment for the
astronauts. Without it,-.even a small amount of CO2 could
linger for a considerable time, causing potentially
hazardous conditions over the long term.

https://www.facebook.com/eitat ath/
videos/hydrophobic-science- 3
experiment-with-
f00d/533822198499881/
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