TREE TRANSPORTATION RESEARCH BOARD

TRB Webinar: Know Before You Mow—Roadside Asset Management Solutions

October 6, 2025

12:00 - 1:30 PM

PDH Certification Information

1.5 Professional Development Hours (PDH) – see follow-up email

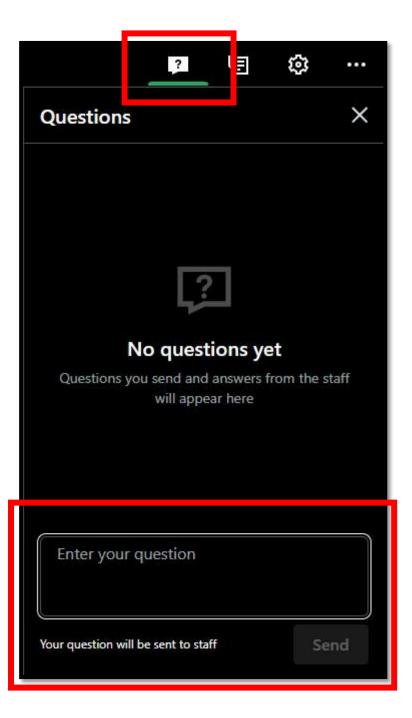
You must attend the entire webinar.

Questions? Contact Andie Pitchford at TRBwebinar@nas.edu

The Transportation Research Board has met the standards and requirements of the Registered Continuing Education Program. Credit earned on completion of this program will be reported to RCEP at RCEP.net. A certificate of completion will be issued to each participant. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the RCEP.

Purpose Statement

This webinar will highlight current practices and challenges in roadside landscape design, asset management, and maintenance. Presenters will discuss strategies to enhance the health, functionality, and resilience of roadside landscapes and share perspectives on how collaboration across disciplines can support sustainable highway systems.


Learning Objectives

At the end of this webinar, you will be able to:

- Understand tools and technologies available for use in roadside asset management
- Find common themes in state DOT efforts to create geographic inventories of roadside land use types
- Identify emerging technologies and the application of AI to transportation asset management systems

Questions and Answers

- Please type your questions into your webinar control panel
- We will read your questions out loud, and answer as many as time allows

Today's Presenters

Ray Willard ray.willard@wsdot.wa.gov

Chris Harris chris.harris@tn.gov

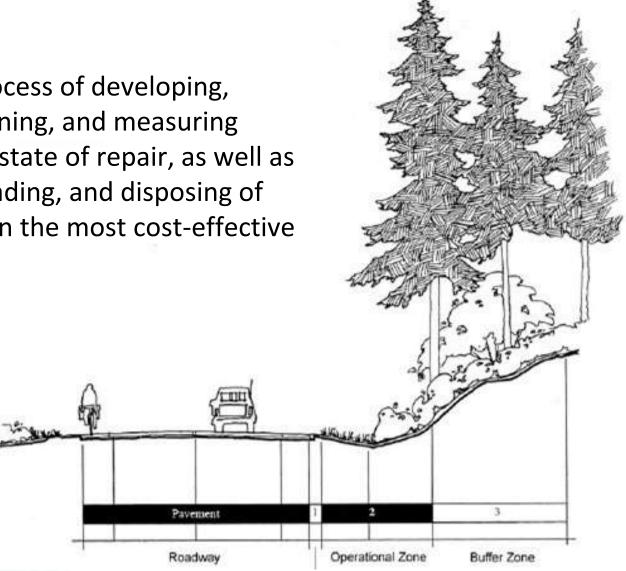
Cheryl Daniels
cheryl.daniels@davey.com

DAVEY

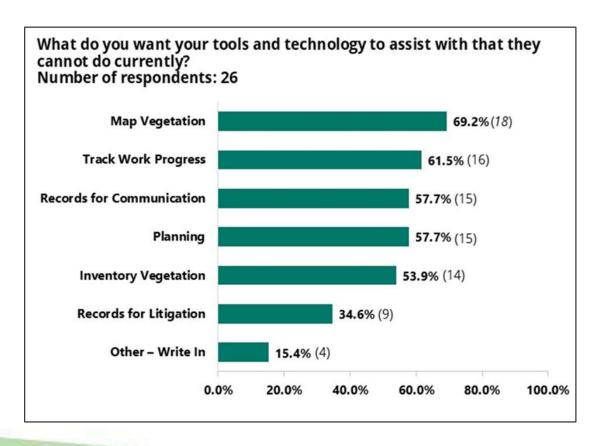
Resource Group

Kris Gade kris.gade@pima.gov

NCHRP 14-47 Tools and Technology for Roadside Vegetation Asset Management


Project Objectives

- Develop a guidebook for performance-based vegetation management strategies covering tools and technology for:
 - Planning and decision making
 - Estimation and benefits optimization
 - Enhancing maintenance operations efficiency and effectiveness
- Provide a roadmap for the advancement of RVAM


RVAM Definition

The systematic process of developing, operating, maintaining, and measuring vegetation assets' state of repair, as well as planning for, upgrading, and disposing of vegetation assets in the most cost-effective manner.

Washington State Department of Transportation, Maintenance Operations Division, 2023.

Surveys - Overview

- RVAM prioritization often differs between central office and local staff
- Mapping software is the most commonly used technology
- Lack of tracking of work hours, work completed or needed
- Additional training needed in several states
- Contractors and In-house staff utilized

Lit Review Findings - RVAM Benefits

DRG, 2021

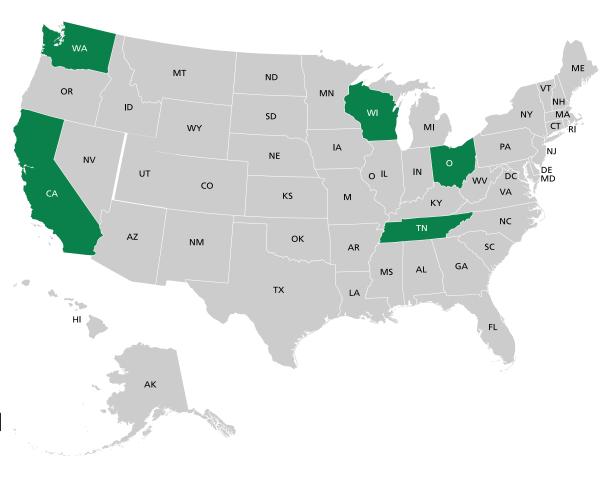
- Can Help Reduce:
 - **Erosion**
 - Landslides
 - Flooding on the roadway
 - Invasive species
 - Vehicle-animal collisions
- Provide fire-resilient ground / firebreaks
- Provide habitat for pollinators

Lit Review Findings - Functional Plantings

https://wisconsindot.gov/Pages/doing-bus/local-gov/hwy-mnt/winter-maintenance/living-snow-fence.aspx

- Snowdrift control
- Visual screens
- Noise reduction barriers
- Delineators
- Erosion control
- Improving air quality
- Impact attenuators; depending on location and type of plant
- Improving motorist temperament and reducing vehicle speeds

Lit Review Findings - Tools and Tech

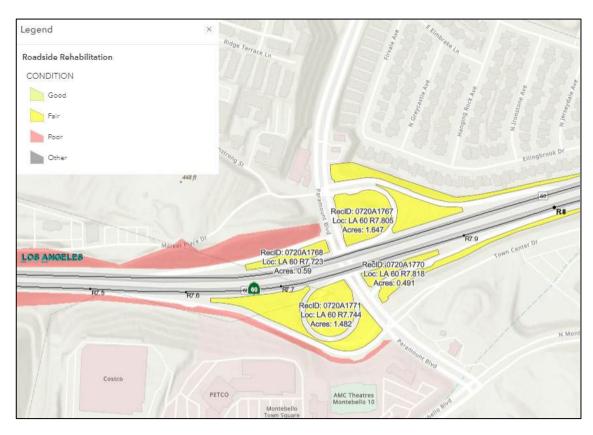


DRG, 2023

- GPS/AVL systems
- Software systems should interface
- Access to geodatabases for construction and maintenance field staff

Case Studies - Overview

- States beginning to add additional assets into state Transportation Asset Management Plans (TAMPs)
- Tools and tech can help to reduce maintenance costs
- Operations staff helpful in plan development
- Consider IT needs when selecting software
- Low funding for RVAM common
- More information is needed for ROI on RVAM tools and tech

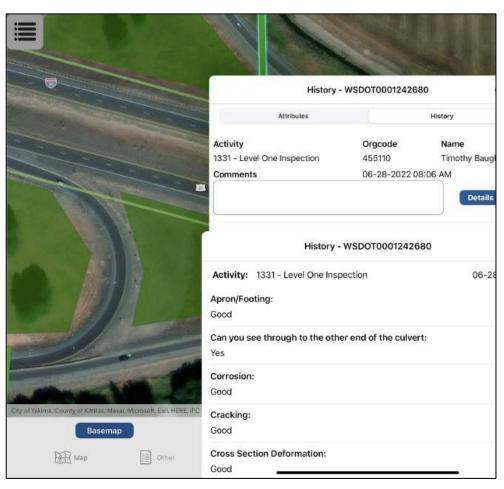


Implementation Recommendations: Link RVAM and TAMP

Features	Definition	Recommended Vector Type	Reason for Vector Type
Areas for PGR and Herbicide	Areas treated with plant growth regular or herbicide	Polygon	Indicate the managed areas size & determine if the size is changing over time
Clear Zone Mowed Areas	Areas adjacent to the road edge mowed for sight distance. Can be 15 or 30 ft depending on state guidelines or requirements.	Polygon	Indicate the size of the managed area

- Standardize common vegetation and vegetation-related safety feature terms
 - Use Data Dictionary
- Use a **proactive** management approach
- Standardize asset condition rating

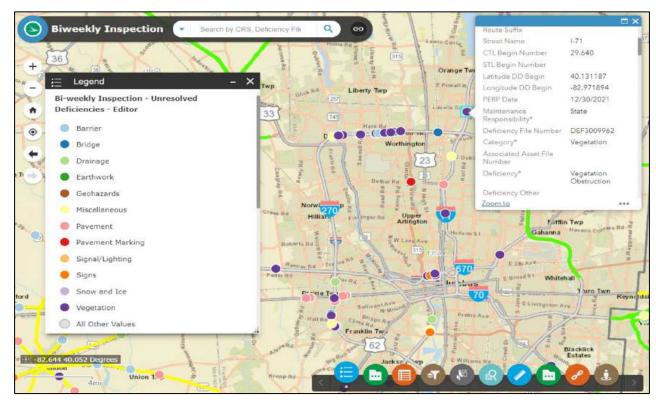
Implementation Recommendations: Asset Condition



Caltrans Division of Design and Division of Maintenance, 2023

- Set up & define rating system as needed for organization
- Define thresholds for maintenance needs
- Use life-cycle planning for maintenance planning
- Conduct regular inventories

Implementation Recommendations:


IT Department

- Consult IT department
- Ensure security permissions met prior to purchase
- Allow third-party IT support when needed
- Office staff need access to GIS software
- Field staff need access to collection systems
- Interfacing systems are more efficient

Washington Department of Transportation Maintenance Operations Division, 2023

Implementation Recommendations - Tools and Technology

Ohio Department of Transportation Office of Maintenance Operations, 2023.

- Plan to upgrade hardware/software every 3-4 years
- Install GPS/AVL-enabled systems in vehicles
- Tablets and cellular devices or data collection
- Use mapping software that updates locations in system automatically
- Use LiDAR to map large vegetation assets
- Artificial Intelligence
- UAVs

Staff and Training

DRG. 2015

- Customer service representatives:
 - Aware of DOT goals
 - Have access to vegetation management timelines
- Increase staff morale and retention
- Provide annual and specialized training
- Communicate the benefits of RVAM to staff and public
- Collaboration between design, construction, and maintenance staff

Possible Funding Sources

DRG, 2024

- Infrastructure Investment and Jobs Act (2022-2026)
- State taxes
 - Gas Tax
 - Vehicle Miles Traveled Tax
 - Usage Fees
 - Tolls
- EPA
- FHWA

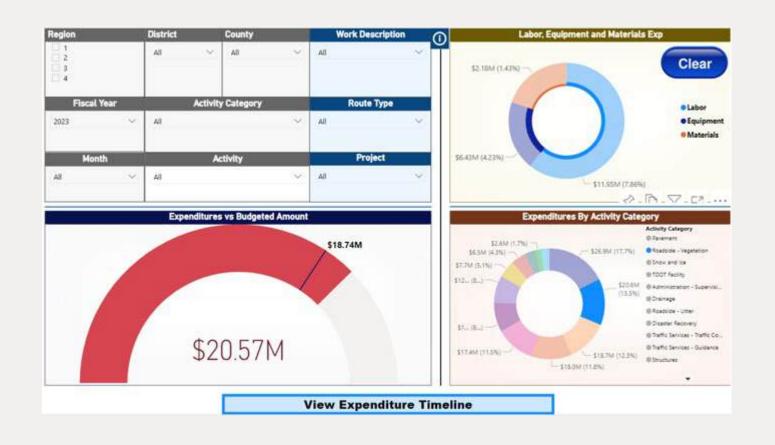
Projects Types Eligible for Funding

Google, 2025

- Flood prevention
- Noxious/invasive species eradication
- Stormwater
- T&E Species protection
- Tree Inventories
- Wetland protection

Keep an Eye Out for Publications:

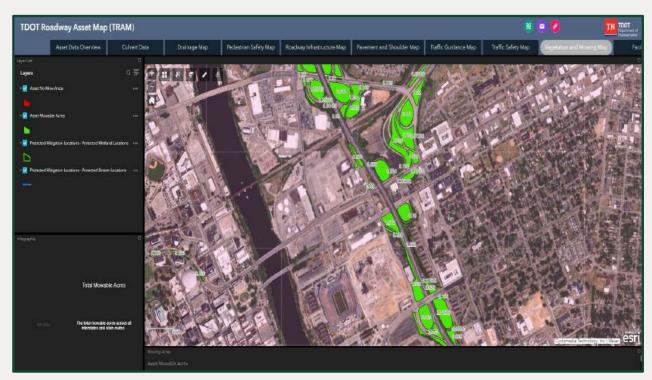
- Guidebook: Research Report 1155
- Report: Web Only Document 429

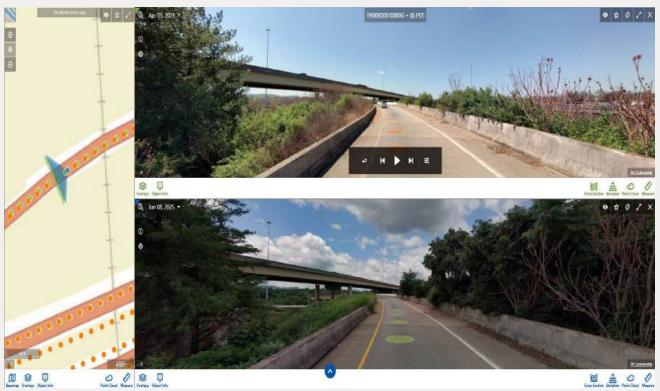

Questions?

Thank you for your time!

Cheryl Daniels
cheryl.daniels@davey.com

Tennessee Department of Transportation Case Study




Benefits of Tools and Technology

- Making GIS data available to non-GIS field staff with TRAM
- PowerBi dashboards
- Use LiDAR imagery to complete vegetation surveys and plan tree work
- Track labor with MMS
- Map the ROW and determine maintenance acreage with GPS/AVL system

TDOT Roadway Asset Map (TRAM) interface showing Vegetation and Mowing Assets

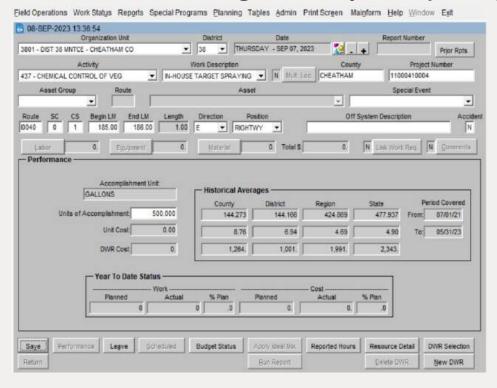
Street-Level, High-Resolution Imagery

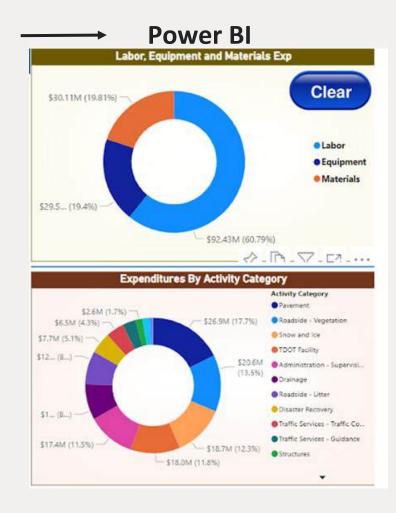
Street-level, high-resolution imagery from Cyclomedia showing changes across multiple collection cycles along TDOT ROW

- Collected by contractor annually
- Compare images across multiple years
- Analysis via LiDAR and imagery
- Information overlaid on mapping software
- Take direct measurement within images
- Data drives decision-making

Mapping Software and Asset Tracking

- LiDAR data and imagery results are integrated into the TDOT Roadway Asset Map (TRAM)
- Used for pre-project reconnaissance
- Data not available to all field staff need for more IT support

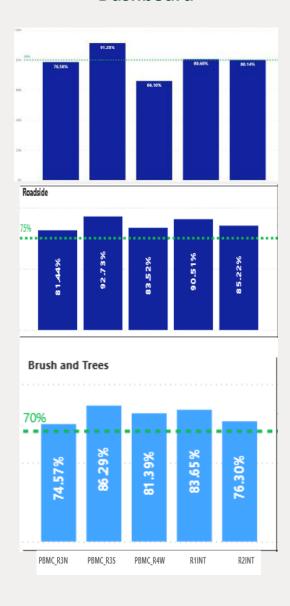

TRAM map showing the locations of trees (green) along an interstate route that require removal (blue) based on street-level, high-resolution imagery


Labor Tracking and Budgeting

GPS on Trucks and Mowing Equipment

→ Maintenance Management System (MMS)




Next Steps for TDOT

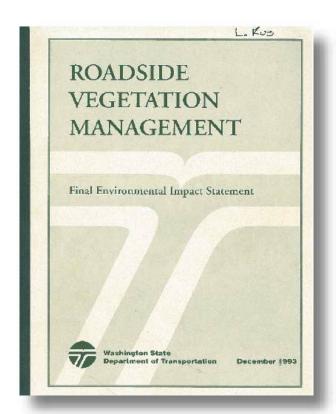
- Performance Based Maintenance Inspections (PBMI)
- Modernize Maintenance Management System to integrate GIS & Condition data
- Develop data-driven, performancebased annual plans & budgets for maintenance
- Provide access to tools to field staff to improve communication up and down
 - Provide access to maps and data
 - Improve ticket response and claim mitigation

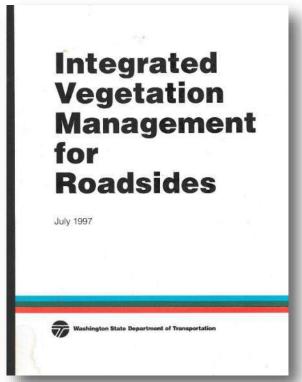
PBMI Condition Survey123 Form

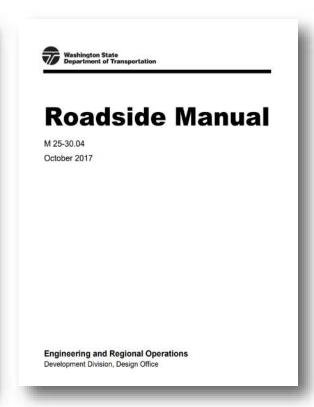
PBMI Condition Scores Dashboard

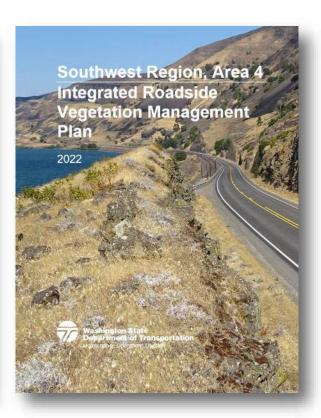
THANK YOU!

Chris Harris, P.E. | Tennessee Department of
Transportation
Statewide Transportation Engineer
chris.harris@tn.gov

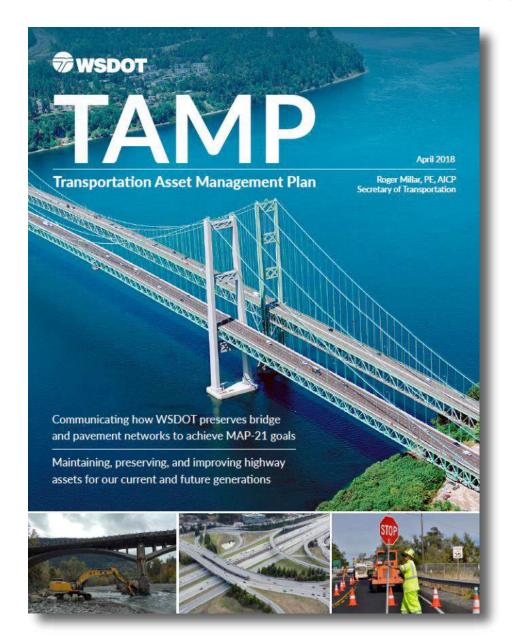


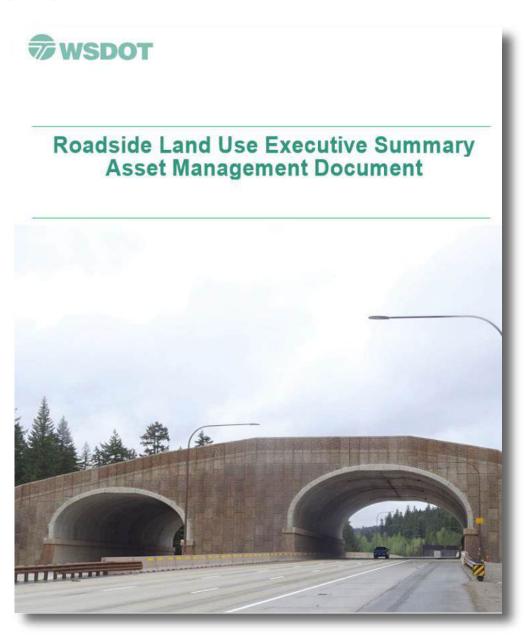



Ray Willard, PLA - Washington State Department of Transportation, State Roadside Asset Manager


ray.willard@wsdot.wa.gov

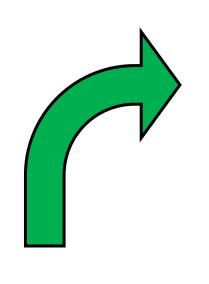
Evolution of WSDOT Roadside Landscape Asset Management 1993 – 2025



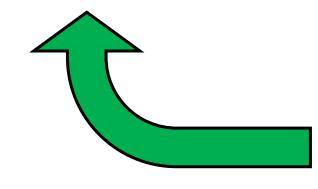


www.wsdot.wa.gov/maintenance/roadside

Evolution of WSDOT Roadside Landscape Asset Management 1993 – 2025



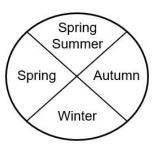
Planning for Maintenance of Washington's Highway Roadside Assets



https://wsdot.wa.gov/construction-planning/protecting-environment/maintaining-vegetation-along-our-highways

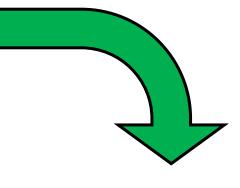
WSDOT's Annual Roadside Landscape Asset Management Cycle

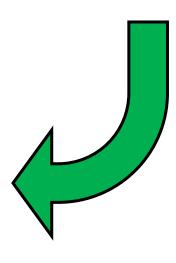
Crews Record Actions in HATS – Incoming Records are Monitored for Accuracy


Crews Record Actions in HATS – Incoming Records are Monitored for Accuracy

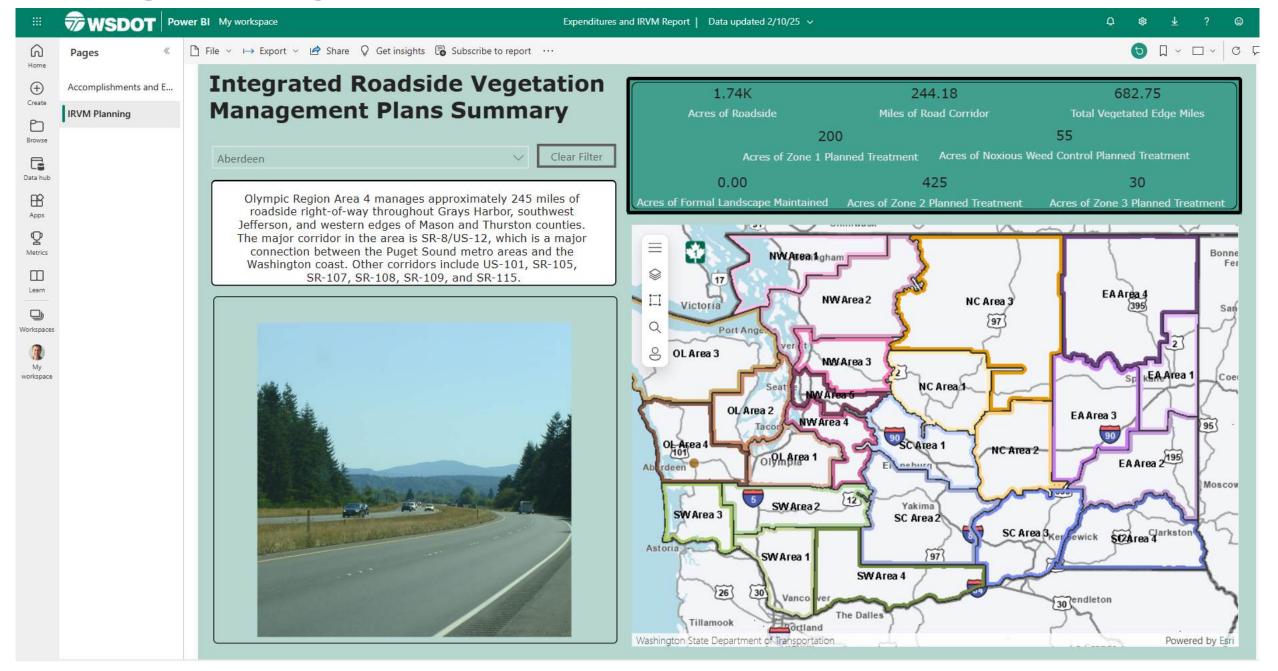
Conduct Crew Training on IRVM Plan Implementation

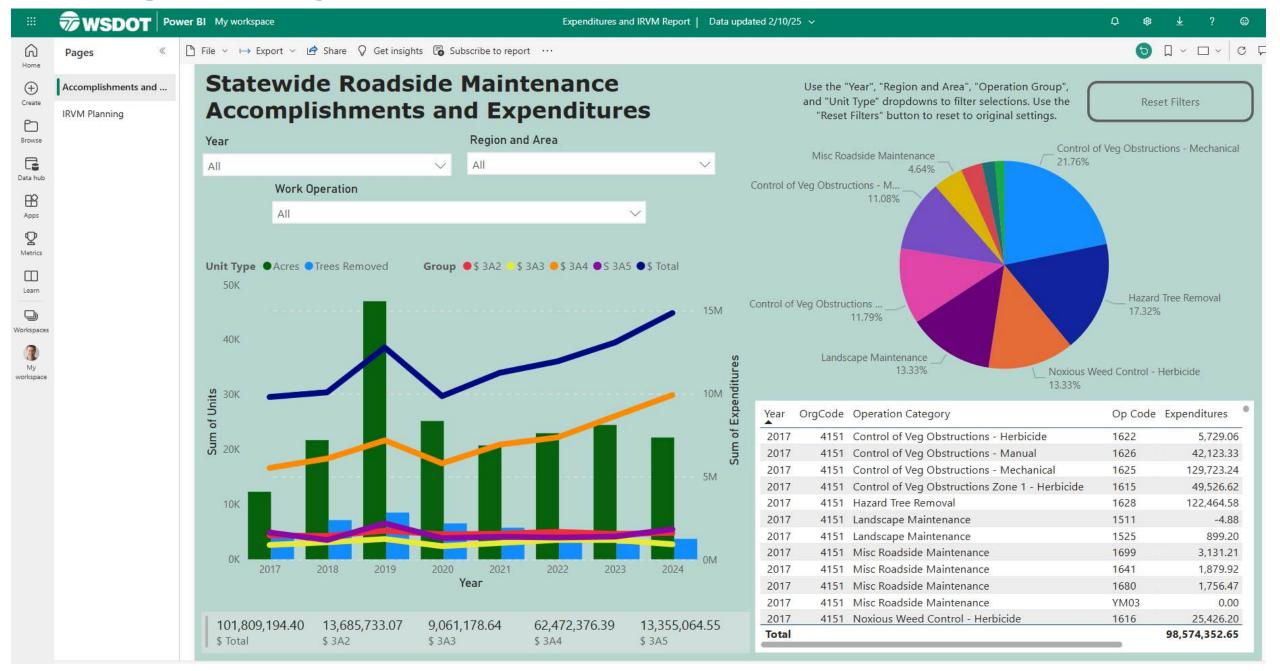
Conduct Vegetation
Management Activities/
Monitor Results from
Previous Years


Update 24 IRVM Plans with input from crews


Conduct Crew Training on Evaluation of Annual IRVM Accomplishments

Annual Data Download & Analysis –
Performance Data Used to Plan Coming Year's
Work and Budget

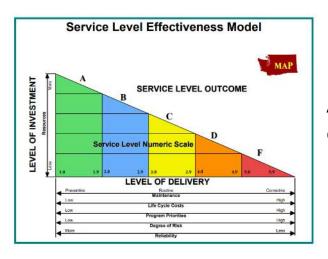

Crews Record Actions in HATS – Incoming Records are Monitored for Accuracy


Recording the Story – WSDOT's Highway Activity Tracking System

Telling the Story with Planned vs. Accomplishment Data and Dollars

Telling the Story with Planned vs. Accomplishment Data and Dollars

WSDOT's Roadside Landscape Asset Management System Components



Annual Workplan and Crew Training

Annual Record of Accomplished Units of Work and LEMO Costs

Demonstrated Performance of RLAM and Resulting System Condition

Annual Measurement of System Condition

VISUALIZING ROADSIDES AS TRANSPORTATION ASSETS

WSDOT owns and maintains approximately 100,000 acres of unpaved land.

As part of the agency's overall Transportation Asset Management Plan, WSDOT has classified and mapped roadside land use areas as shown on this poster.

This geographic inventory of six specific roadside land use types provides the basis for budgeting, planning, tracking, monitoring, and evaluating maintenance actions, and for measuring agency performance.

FORMAL LANDSCAPE

Only maintained along some urban freeway corridors and around Safety Rest Area facilities. Plantings are designed as public amenities, and constructed to be routinely maintained in a set condition which provides for both safe highway operation and safety for controlled public access.

TOTAL ACRES 1,100

ZONE 1

Vegetation-free edge, maintained as required where shoulders are designed for stormwater sheet flow.

ZONE 2

Low-growing vegetation, maintained throughout the system, width is determined by highway design and local site constraints.

ZONE 3

Present where there is extra right of way beyond the outside edge of Zone 2, between divided highway alignments, and at freeway interchanges.

RESOURCE CONSERVATION AREAS

Relatively undisturbed natural areas adjacent to the right of way, purchased for preservation during construction of the interstate system. These areas require little to no maintenance.

TOTAL ACRES
820

ENVIRONMENTAL MITIGATION

Sites maintained for 10+ years, in response to highway construction environmental permit requirements (Once permit requirements are fully met, sites are classified and maintained as part of Zone 3).

TOTAL ACRES 2,000

^{*}Data Sources: WSDOT HATS and FIRS - Calendar Year 2022

Routine Annual Maintenance vs. Integrated Vegetation Management

ZONE 1

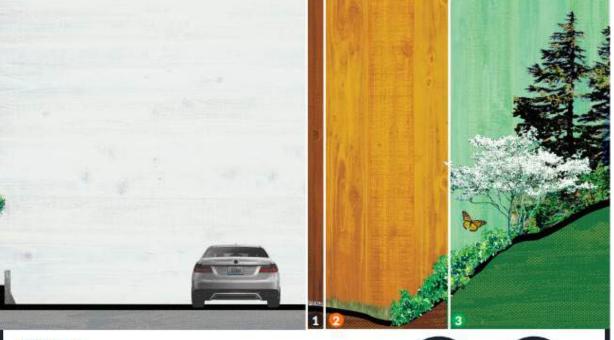
Vegetation-free edge, maintained as required where shoulders are designed for stormwater sheet flow.

ZONE 2

Low-growing vegetation, maintained throughout the system, width is determined by highway design and local site constraints.

ZONE 3

Present where there is extra right of way beyond the outside edge of Zone 2, between divided highway alignments, and at freeway interchanges.



ZONE 1

Vegetation-free edge, maintained as required where shoulders are designed for stormwater sheet flow.

ZONE 2

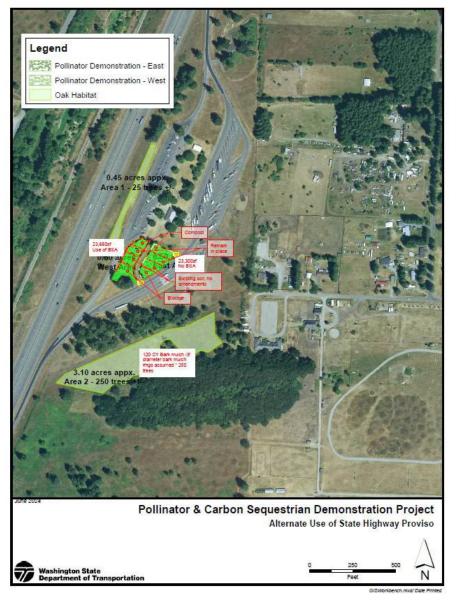
Low-growing vegetation, maintained throughout the system, width is determined by highway design and local site constraints.

ZONE 3

Present where there is extra right of way beyond the outside edge of Zone 2, between divided highway alignments, and at freeway interchanges.

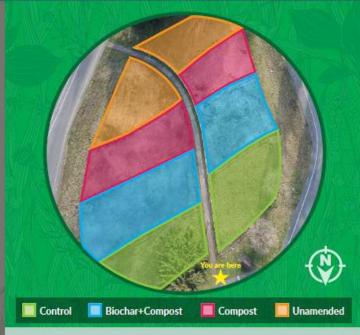
^{*}Calendar Year 2022

^{*}Calendar Year 2024



Demonstrating the Potential in Roadside Landscape Management Using Integrated Vegetation Management to establish native ecosystems

Welcome to the Scatter Creek Roadside Research Lab


In 2024, Washington state legislation funded a research project to demonstrate best restoration practices that:

- Maximize carbon sequestration
- Develop habitat and forage for native pollinators, Monarch butterflies and honeybees
- Use native, non-invasive flowering plants and grasses along state highway rights-of-way and at safety rest areas

For the past 50 years, the Scatter Creek Rest Area and surrounding prairie along I-5 have been demonstrating the state legislature's intent. Over 50 acres of the highway right-of-way in this area have been managed to control invasive species like Scotch broom to promote a sustainable roadside of native species like Camas and Oregon White Oak. This research project intends to expand the early foundation of this past work by fostering a stable ecosystem for decades to come.

Monitoring is continuously downloading data to a cloud based interface for further analysis.

Pollinator meadow

A nearly one-acre habitat area was created to study the success of typical roadside restoration methods. The site consists of eight fenced plots, each prepared uniquely to compare outcomes. The plots use native soil amended with biochar and compost while others remained unaltered or unamended. The southern most plots did not get amended to determine the level of growth establishment compared to the amended plots. The northern most plots were not changed serving as a control for comparison and pollinator recruitment potential. All plots were seeded with the same pollinator species, but only the west plots received biotic soil amendment.

Data is continuously collected using environmental sensors to monitor weather, soil chemistry, plant growth and pollinator presence, including Monarch butterflies and honeybees, to assess differences in establishment and ecosystem benefits.

Carbon Sequestration

Washington State Department of Transportation planted over 500 native Oregon White Oak trees in the South Puget Sound Scatter Creek Prairie to restore an endangered ecosystem and enhance carbon sequestration throughout a 4 mile area of the rest area. Additionally, WSDOT is testing assisted species migration by planting Coastal Redwood and Giant Sequoia trees, known for their resilience and high carbon storage capacity in response to changing climate conditions.

Creating beautiful and beneficial roadside landscapes

Pollinator meadows

You are looking at a series of pollinator meadow test plots planted by the Washington State Department of Transportation.

These meadows aren't just visually stunning, they also provide incredible environmental benefits that go beyond aesthetics.

Pollinator meadows are planted with native, non-invasive flowering plants and grasses that attract vital pollinators, such as bees, butterflies, and birds. Meadows like these are crucial for our ecosystems as they support the pollinators responsible for approximately one-third of the food we eat. From fresh fruits to vegetables, our family farms rely on healthy pollinator populations to produce the food that sustains us.

In addition to adding beauty to our highways, these meadows are part of a broader effort to restore native plant species, like Camas and Oregon White Oak and combat invasive

plants such as Scotch Broom. This project will help create long-term, stable ecosystems that will thrive for decades to come.

Pollinator meadows require far less mowing and upkeep compared to traditional turf grass, which helps conserve resources, reduce emissions and lower maintenance costs.

While the meadow takes a break from blooms in the winter, it remains a valuable habitat. Overwintering insects find refuge in the meadow, using it as a home to survive through the colder months. To ensure the ongoing health of this ecosystem, these meadow plots will be kept in a natural condition as much as possible without mowing. If mowing does occur it will be for weed control and promotion of the planted native vegetation.

By providing food and shelter for pollinators year-round, our meadow plays a critical role in supporting the biodiversity of Washington State and demonstrating the beauty and practicality of native plant landscapes.

A year-round blooming habitat: Pollinator meadow

Our pollinator meadow is alive with color and activity throughout much of the year, providing a rich and varied habitat for pollinators and other wildlife.

Early spring to summer blooms (March - July)

MINIATURE LUPINE (Lupinus bicolor) This perennial wildflower graces the meadow with vibrant blue blooms from early spring to early summer.

BLUE-EYED GRASS (Sisyrinchium bellum) A delicate, grass-like flower with brilliant purple hues.

WESTERN YARROW
(Achillea millefolium)
Known for its
feathery leaves and
clusters of
yellowish-white
(rarely pink) flowers.

FAREWELLTO SPRING (Clarkia amoena) A lovely wildflower that flourishes as the season shifts.

(May – August)

Summer blooms

birds and butterflies.

RED AND
CALIFORNIA POPPY
(Papaver rhoes and
Eschscholzia
californica):
Bright, bold blooms
that attracts bees,

OREGON SUNSHINE (Eriophyllum lanatum) A golden-yellow flower that thrives in summer

BLUE GILIA
(Gilia capitata)
Known for its
lavender-blue,
round clusters that
serve as a beacon
for pollinators.

(June - October)

SHOWY MILKWEED (Asclepias speciosa) A favorite for Monarch butterflies and other pollinators, its pinkish flowers provide essential nectar.

Late season blooms

SLENDER CINQUEFOIL (Potentilla gracilis) A late-blooming plant with bright yellow flowers that provide food for pollinators heading into fall.

ASPEN FLEABANE (Erigeron speciosus) Another late bloomer that continues to attract pollinators until the cooler weather sets in.

Prairie ecosystems along the roadside

How roadsides work for you

Open prairie ecosystems have been a defining feature of Western Washington and the Puget Sound Basin since the end of the last Ice Age. The sections of open prairie landscape were formed in part by the forces of ancient glaciers and the activities of the indigenous people in the area. For thousands of years, Native American communities relied on these prairies for hunting, foraging and navigation, using them to move through the old-growth forests that once dominated the overall landscape.

Camas

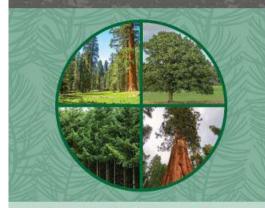
One of the most important native species in Washington's prairie landscapes is Camas (Camassia quamash), a blue-flowering plant in the asparagus family. Camas serves as a key food source for Mazama pocket gophers. For thousands of years. Native American communities carefully cultivated and harvested Camas as a staple food in their diets.

As part of our commitment to prairie restoration, the meadow plots and surrounding freeway roadsides in our roadside research lab will be planted to encourage dense Camas populations over time.

By preserving native prairie ecosystems, we support biodiversity, cultural heritage and long-term environmental sustainability along Washington's highways.

When properly established and managed over time, Camas forms a stunning blue carpet of pollinator-friendly blooms each spring.

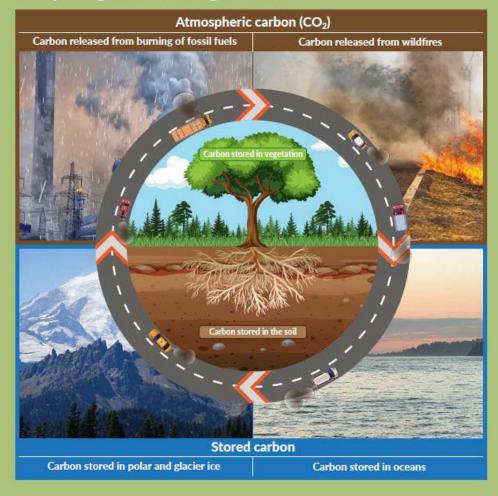
Mazama Pocket Gophers


These small, reddish-brown rodents measure up to 10 inches in length, with long front teeth, sharp claws and cheek pockets for storing food. Washington is home to seven subspecies, named after their geographic locations. Of these, the Olympia, Tenino, Yelm, and Roy subspecies are prominent in the Puget Sound region and are listed as threatened in Western Washington.

In modern times, the productivity of these prairies is maintained in part by the efforts of the Mazama pocket gopher (Thomomys mazama). Mazama pocket gophers are seldom seen. They dig extensive tunnel systems with multiple entrances searching for the roots of grasses and flowering plants like Camas which they pull underground and use for food and bedding material. Pocket gophers are a critical part of the prairie ecosystem. Their excavations till the soil and distribute nutrients that promote plant productivity.

Trees, carbon storage, and wildfire resilience

In addition to the pollinator meadow plots in our Scatter Creek Roadside Research Lab, we are enhancing the landscape by planting hundreds of native Oregon White Oak trees and testing assisted species migration in response to climate change. This includes the introduction of Coast Redwood and Giant Sequoia trees, species known for their resilience to wildfire and large carbon storage capacity. You can spot some of the redwoods planted in the open area beyond the rest area access road to the east.


Carbon balance and roadside reforestation

Vehicles, buses and semi-trucks are a major contributor to carbon emissions, a key driver of climate change. To help counteract this, WSDOT is working to capture and store carbon in trees and soils along our roadsides. Oregon White Oaks, Coast Redwoods, Giant Sequoias and Douglas Firs are particularly effective at absorbing atmospheric carbon and converting it into organic matter. A significant portion of this carbon is stored not just in the visible tree growth, but also in extensive root systems, helping to lock carbon in the soil for long-term storage.

Fire prevention and fire-resilient roadsides

Wildfires are a major source of atmospheric carbon, and in some cases, roadside vegetation can catch fire from vehicle sparks or overheated engines. As part of the roadside demonstration lab, we are testing strategies for enhancing wildfire resilience through planting strategies that reduce potential for fire starts and slow fire spread. This demonstration lab extends two miles north and south along I-5, beyond what you see here at the safety rest area. Through pollinator habitat restoration, invasive species management, carbon sequestration and wildfire prevention, we are working to create a more resilient and sustainable roadside ecosystem.

Recycling and storing carbon

Demonstrating the Potential in Roadside Landscape Management Using Integrated Vegetation Management to establish native ecosystems

Today's Presenters

Ray Willard ray.willard@wsdot.wa.gov

Chris Harris chris.harris@tn.gov

Sciences Engineering

Cheryl Daniels cheryl.daniels@davey.com **Resource Group**

Kris Gade kris.gade@pima.gov

Upcoming events for you

October 28, 2025

TRB Webinar: Improving Teen Driver Safety

January 11-15, 20262026 TRB Annual Meeting

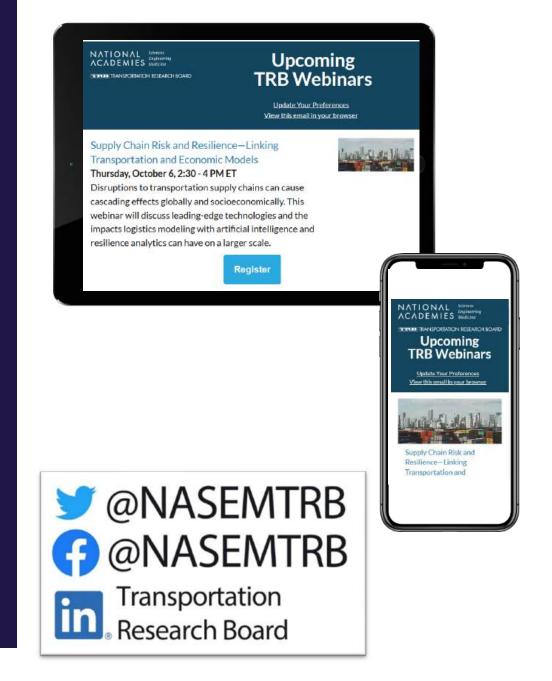
https://www.nationalacademies.org/trb/ events

Subscribe to TRB Weekly

If your agency, university, or organization perform transportation research, you and your colleagues need the *TRB Weekly* newsletter in your inboxes!

Each Tuesday, we announce the latest:

- RFPs
- TRB's many industry-focused webinars and events
- 3-5 new TRB reports each week
- Top research across the industry

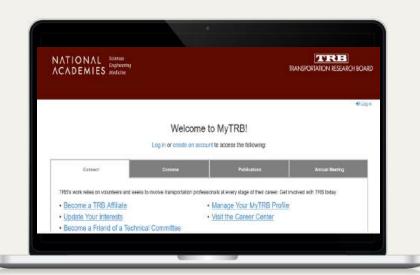

Spread the word and subscribe! https://bit.ly/ResubscribeTRB Weekly

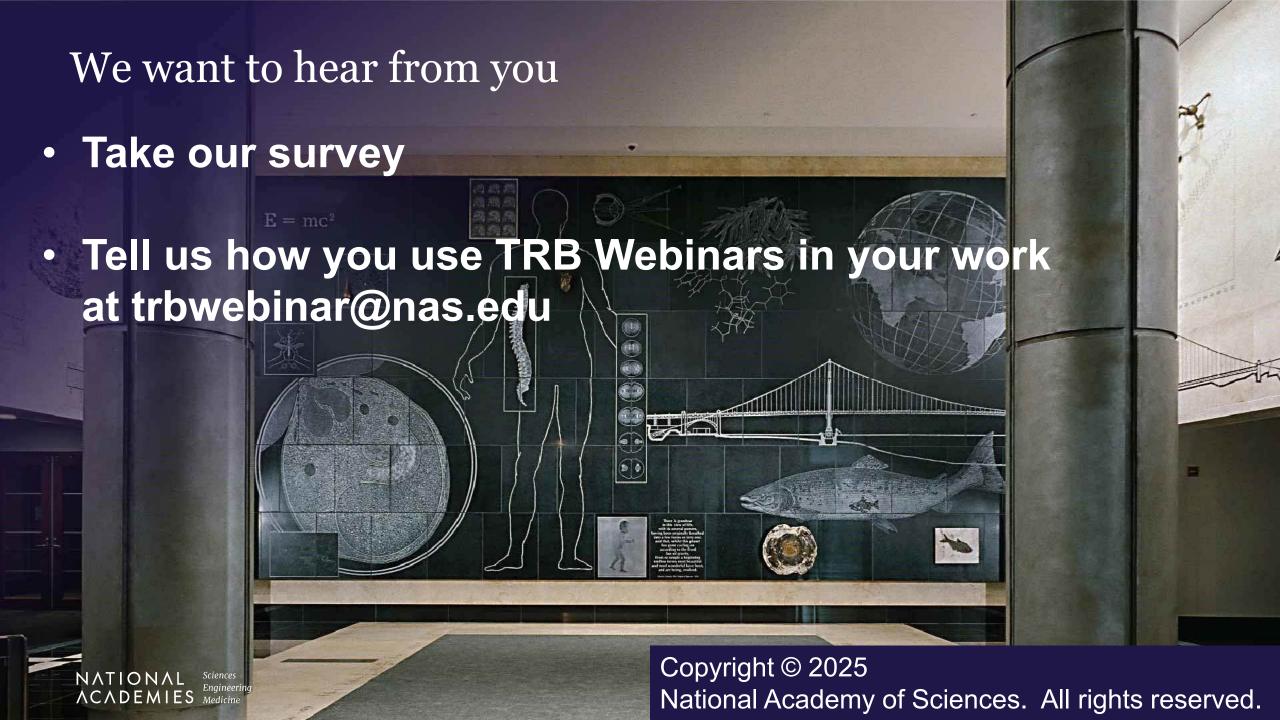
Discover new TRB Webinars weekly

Set your preferred topics to get the latest listed webinars and those coming up soon every Wednesday, curated especially for you!

https://mailchi.mp/nas.edu/trbwebinars

And follow #TRBwebinar on social media


Get involved


TRB mobilizes expertise, experience, and knowledge to anticipate and solve complex transportation-related challenges.

TRB's mission is accomplished through the hard work and dedication of **thousands of volunteers**.

https://www.nationalacademies.org/trb/get-involved

