TRB Webinar: Planning for Growth in Electric Vehicle Charging at Airports

September 11, 2025 1-2:30 PM ET

Today's Learning Objectives

- Establish a framework for determining needs and gaps in EV charging infrastructure at public parking facilities
- 2. Understand the different use cases for airport vehicle charging and the unique characteristics of each case
- 3. Access tools and resources to assist airports in planning for EV charging

American Association of Airport Executives (AAAE)

1.0 Continuing Education Units (CEUs) are available to Accredited Airport Executives (A.A.E.)

Report your CEUs:

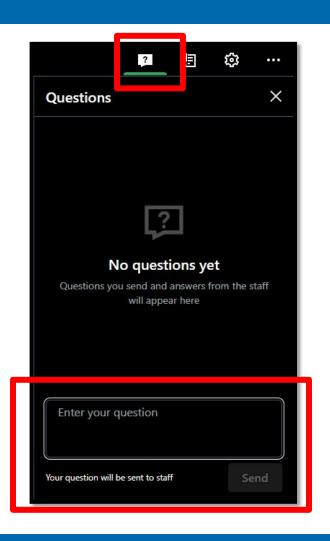
www.aaae.org/ceu

American Institute of Certified Planners (AICP)

1.5 Certification Maintenance Credits

You must attend the entire webinar to be eligible for credits

Log into the American Planning Association website to claim your credits



Questions and Answers

Please type your questions into your webinar control panel

We will read your questions out loud, and answer as many as time allows

#TRBwebinar

Kingsley Coppinger City of Austin – Aviation

- Environmental Conservation Program Manager
- Advances the airport's sustainability and energy efficiency goals

Today's Speakers

Jacqueline Kuzio <u>j-kuzio@tti.tamu.edu</u> *Texas A&M Transportation Institute*

Geoff Morrison
geoffrey.morrison@cadmusgroup.com
Cadmus

Rex Hazelton

<u>daniel.hazelton@cadmusgroup.com</u> *Cadmus*

ACRP Synthesis 138

Electric Vehicle Charging Stations at Airport Passenger Parking Facilities

Jacqueline Kuzio, Ph.D.
Texas A&M Transportation Institute

TRANSPORTATION RESEARCH BOARD

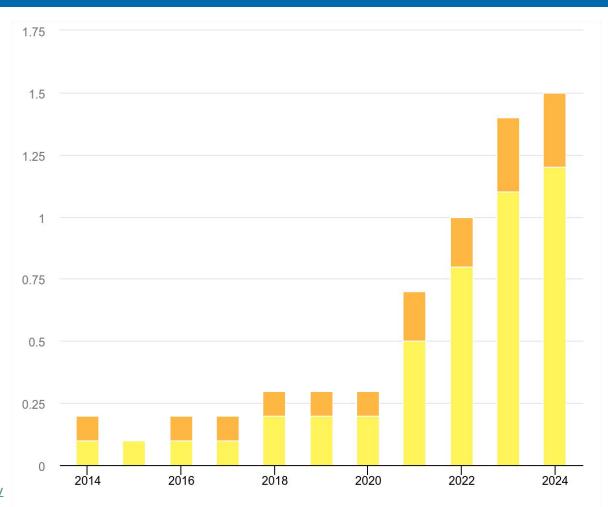
Jacqueline Kuzio, Ph.D. Principal Investigator

- Associate Research
 Scientist, Texas A&M
 Transportation Institute
- Program Manager,Investment Analysis

ACRP Synthesis 138 Panel

Kingsley Coppinger, City of Austin, TX, Department of Aviation Brenda L. Enos, TRC
Shailesh Gongal, Massachusetts Port Authority
Casey Lamont, City of Burlington Electric Department,
Heather McKee, Denver International Airport
Sandy Webb, Environmental Consulting Group
Scott Tener, FAA Liaison

Motivation for the Research

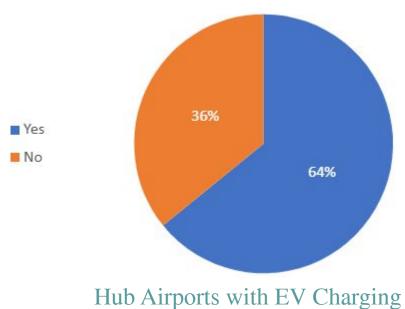

 Increasing EV sales in the U.S; growing from 100,000 in 2013 to over 1 million in 2023.

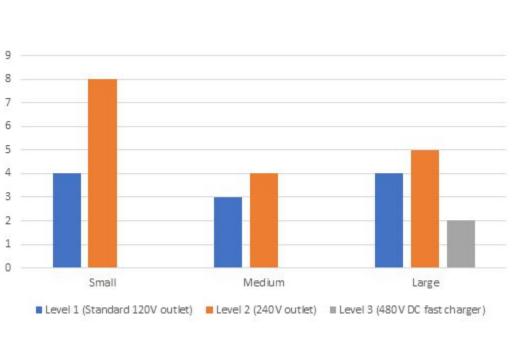
- <u>Limited guidance on the unique passenger</u> use case at airports.
- Updating ACRP Synthesis 54 released in 2014.

The Changing EV Landscape

U.S. EV Sales 2014-2024 (millions)

Source:


https://www.iea.org/reports/global-ev-outlook-2025/


trends-in-electric-car-markets-2

The Changing EV Landscape

Charging Station Types at Airports by Hub Size

State of the Practice

- → Existing Electric Vehicle Infrastructure at Airports
- Parking Use Cases for Different EV Chargers
- Challenges & Opportunities Associated with Charging at Airport Parking Facilities

Passenger Parking Use Cases

Short-Term Parking

- → Level 2
- Level 3 for pick-up/drop-off*

Long-Term Parking

→ Level 1 or 2

Challenges and Opportunities

Challenges

Location and Demand Management

Data Collection and Utilization Policies

Utility Coordination and Load Management

Investment Costs

Safety

Cybersecurity

Opportunities

Funding

\$ Revenue Recovery

Innovative Solutions

The Airport Experience

The Passenger
Parking Use Case

Charging Stations and Associated Infrastructure

Funding and Revenue

Safety & Security Considerations

Workforce Needs

Key Decision Points

- Charger Level
- Charger Location
- > Networked vs. Non-Networked
- → Data Collection
- Energy Management
- → Staff Impacts

What type of charger?

	Level 1	Level 2	DC Fast Charging
Connector Type	J1772 Connector	J1772 Connector	CCS Connector CHAdeMO Tesla Connector
Voltage	120 V AC	208 - 240 V AC	400 V - 1000 V DC
Typical Power Output	1kW	7kW - 19kW	50 - 350 kW
Estimated PHEV Charging Time from Empty	5 - 6 hours	1 - 2 hours	N/A
Estimated BEV Charge Time from Empty	40 - 50 hours	4 - 10 hours	20 minutes - 1 hour
Estimated Electric Range per Hour of Charging	2 – 5 miles	10 - 20 miles	180 - 240 miles
Typical Locations	Home	Home, Workplace, and Public	Public

Where to locate chargers?

- Facility:
 - New construction vs. retrofit
 - Centralized vs. across all parking facilities.

- Within the facility:
 - Visibility
 - Accessibility

Figure 2. EV Parking Signage at Northwest Arkansas National Airport Source: Northwest Arkansas National Airport

Whether to use network or non-network chargers?

Factors to Consider

- Parking Facility/Use Case
- Number of Assets
- Cost

Cybersecurity

Benefits of Network Chargers

- Ease of monitoring
- Payment system
- Load management strategies
- Maintenance

What are the total energy needs?

- Understanding total airport energy needs
- Coordinating with utility on existing and future needs

Load management strategies

When, and how, to collect data?

Potential data collection needs:

- Tax reporting,
- Environmental metric tracking,
- Power consumption,
- Dwell time on chargers,
- Uptime and maintenance needs, and
- Reporting for environmental or accreditation programs.

What are the staffing needs?

- → Can existing staff handle maintenance?
- → Is additional training required?
- → At what point would additional staff be required?

Remaining Research Needs

Comprehensive guidance on EV charging equipment

Clarification on key stakeholders and charging management

Workforce Analysis

EV Charging at Off-Site Facilities

Safety and Security of EV Infrastructure

ACRP Project 03-71

Planning for EV Growth at Airports

Geoff Morrison, Cadmus **Rex Hazelton,** Cadmus

Geoff Morrison, PhD, PMP Principal Investigator

- Principal Consultant, Cadmus
- Technical lead for 50+ electric vehicle planning projects
- → PI/PM on 5 prior ACRP projects
- Former Navy Nuclear Officer

Rex Hazelton, PMP Project Manager

- Senior Associate, Cadmus
- Currently leading
 Interstate 95 EV charging
 corridor implementation
- → Electric vehicle fire safety certification
- Proud owner of HyundaiIoniq 5

ACRP 03-71 Oversight Panel

Katie Zarachowicz, City and County of Denver

Janet Birch, Alaska Airlines, Inc.

Adam Cohen, University of California, Berkeley

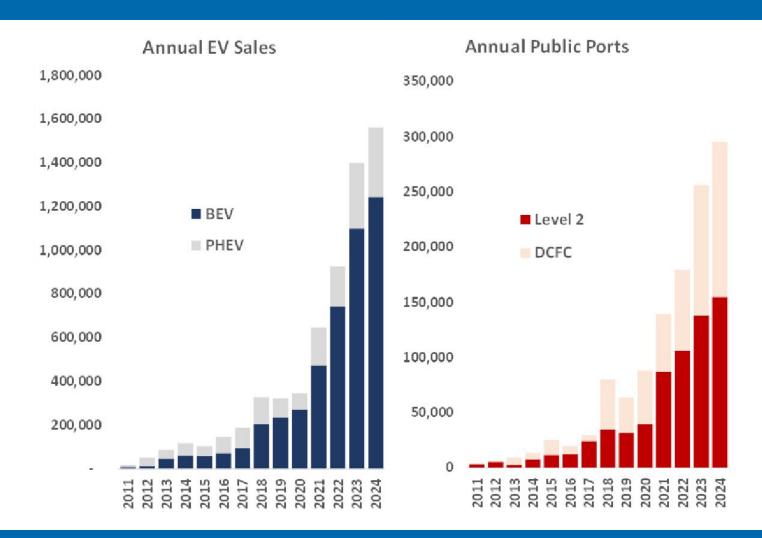
Kingsley Coppinger, City of Austin, TX, Department of Aviation

Jonathan Ells, Eastern Research Group

Andrew Jones, Hartsfield Jackson Atlanta International Airport

Jacqueline Kuzio, Texas A&M Transportation Institute

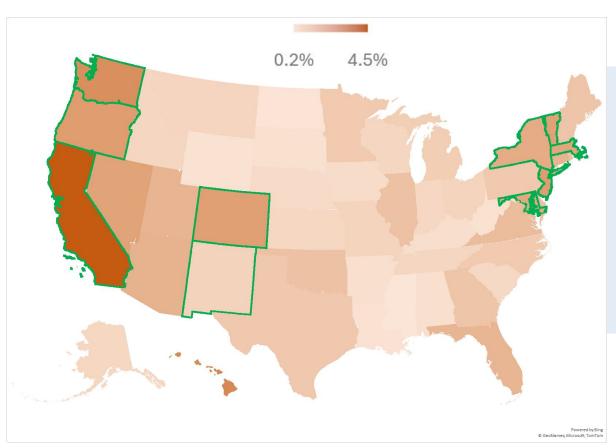
Matt Griffin, ACRP Senior Program Officer



Motivation for Project

- EVs accounted for 10% of new vehicles in the US in 2024 (30% in some jurisdictions)
- Airports are rapidly building charging stations on both the landside and airside
- The airport community lacks resources on key concepts and best practices

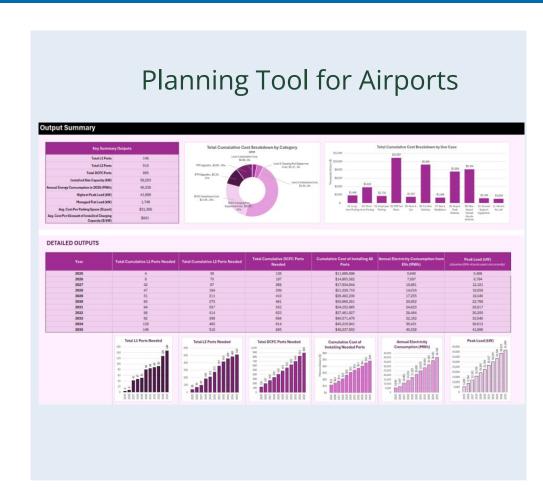
Background



Background

EVs as Percentage of Total Vehicle Stock, 2024

- States in green adopted Advanced Clean Cars II (ACC II) regulation
- Numerous states that have not adopted ACCII see high levels of EV adoption, including Arizona, Florida, Hawaii, Utah and Connecticut.


Key Products from ACRP 03-71

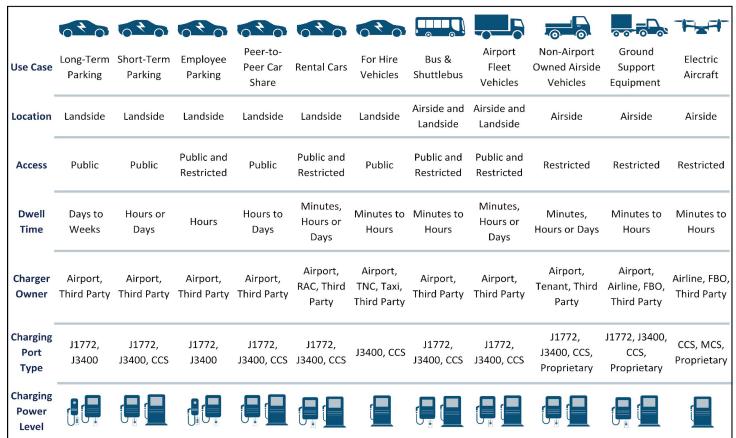
Electric Vehicle Planning Guide

Primer on
Airport
Electrification
Master Planning

Electric Vehicle Use Cases at Airports

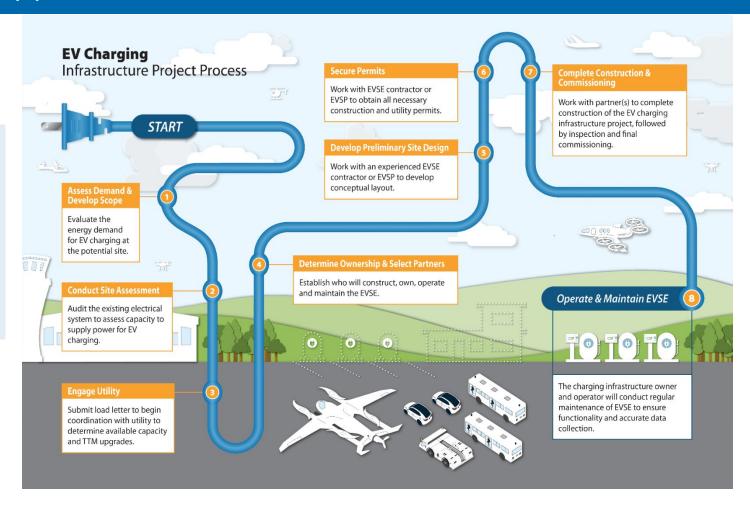
Use Cases are vehicle-charger combinations, defined by their unique operational and charging characteristics (e.g., duty cycle, power level, plug type, time of use, load curve).

Level 1 <1.9 kW



Level 2 <19.2 kW

DCFC 50kW+

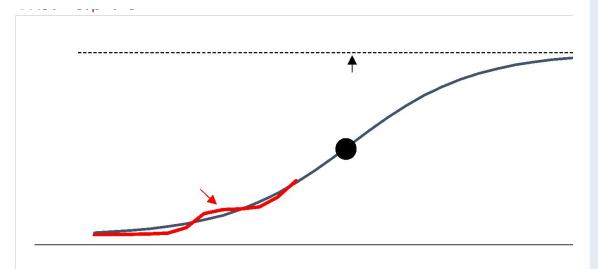


Steps to Install Charging

Learning Application 1

Question:

What are the steps to installing charging infrastructure?



Load Forecasting for Public/Rental EVs

Learning Application 2

Question: What will EV load be in 3, 5, 10, 20 years?

$$S_i = \frac{L}{\left(1 + e^{\left(-k*(x_i - x_{0)}\right)}\right)}$$

Load Drivers:

- Number of EVs in airport catchment area
- Number and type of ports
- Pricing of charging
- Proximity of airport to population center

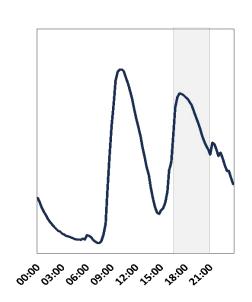
Demand ChargesLearning Application 3

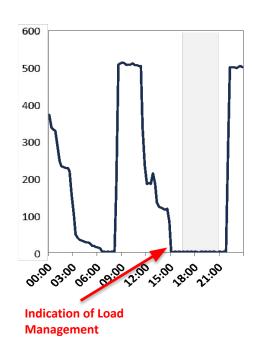
Question: What are the financial impacts of demand charges?

EXAMPLE: Station at an airport CONRAC has eight 150 kW DCFC ports which are sometimes used concurrently:

- <u>Scenario 1</u>: Simultaneous charging at rated capacity is 150 kW x 8 = <u>1,200 kW</u>
- <u>Scenario 2</u>: Power sharing with a not-to-exceed power of <u>300 kW</u>

If the demand charge is \$10/kW, savings under Scenario 2 are **\$9,000** per month




Load Management

Learning Application 4

Question: How can airports ensure fleets are actively managing load?

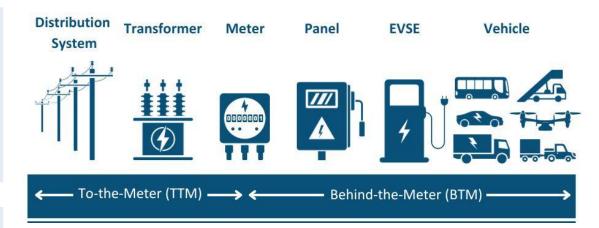
~ U U I V I/ I

- To spot load management in load shapes look for drop offs in high-cost periods, typically around 4 PM.
- Many fleets don't practice load management because of lack of knowledge or communication failures between drivers, fleet managers, and finance departments.

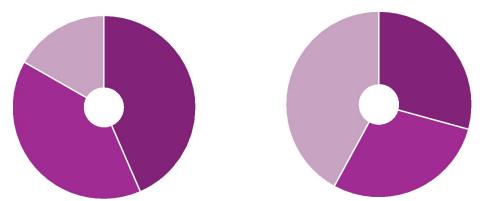
Charger Selection Learning Application 5

Question: What mix of chargers is needed in the long-term parking facility?

- What is the profile of travelers in the parking facility?
- What is their dwell time?
- What is the expected EV population in the catchment area?
- What fraction of vehicles need are low on fuel?
- What are the ADA requirements in your state?



Cost to Install Charging Learning Application 6


Question: You have an \$820,000 budget. Should you invest in L1, L2, or DCFC ports in your passenger parking?

Assuming new surface lot construction, for the same budget you could either install:

- 800 L1 ports
- 50 L2 ports
- 18 50 kW ports
- 4 350 kW ports

50 x L2 Ports (19kW)4 x 350 kW Ports

Rental Car Scenario Learning Application 7

Scenario:

- Installation of a new rental car surface lot facility in Tucson AZ
- 60 ports being installed in phases between 2027-2030
- 54 Level 2 (19.2 kW)
- 6 DC Fast Charge (150 kW)

BASIC INPUTS

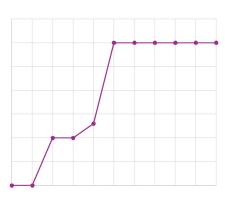
Instructions: Enter inputs to yellow cells. View outputs in purple cells and graphs

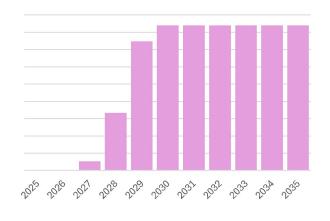
	User Inputs	Units	Notes
State	AZ	State Abbreviation	Select your state.
Airport Metro Area	Tueson, AZ	N/A	Select your metro area. This auto- populates EV projections.
Type of Facility (Optional)	Surface Lot	N/A	Select type of parking facility. This impacts the cost of installation.
Type of Building Project (Optional)	NewFacility Construction	N/A	Select type of building project. This impacts the cost of installation.
Required Electrical Infrastructure Upgrades	Low	None/Low/High	Click on input cell to see instructions.
Year of Distribution System Upgrades (Optional)	2028	N/A	Select the year in which distribution system upgrades will occur. Default 2025.
Total Rental Car Parking Spaces	300	Parking Spaces	Enter the number of parking spaces for all vehicles.
Maximum EV-Ready Parking Spaces	20%	%	Enter the maximum percentage of EV ready spaces.
L2 Power Capacity (Optional)	19.2	kW	Enter the power capacity of the L2 ports. Default: 19.2 kW
DCFC Power Capacity (Optional)	150	kW	Select the power capacity of the DCFC ports to be installed. Default: 50 kW

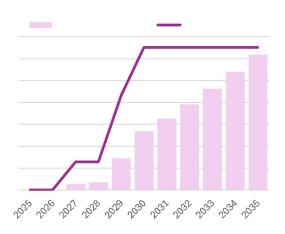
CHARGING INPUTS

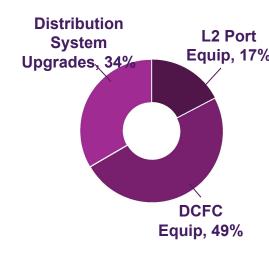
Instructions: Allocate the 60 charging ports between years in the yellow cells based on the planned development timeline

Installed ChargingPorts Target		60		Remaining Charging Ports to Allocate									
ProjectYear	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	Total by Type	% by Type
Level 2 Charging Ports			20			34						54	90%
DCFC ChargingPorts					6							6	10%
Total Installations	0	0	20	0	6	34	0	0	0	0	0	60	
% of Total Installations	0%	0%	33%	33%	43%	100%	100%	100%	100%	100%	100%		




Rental Car Scenario Learning Application 7


Estimated EV Population in Tucson, AZ



Long-Term Parking Scenario Learning Application 8

Scenario:

- Renovation of existing airport fleet vehicle lot.
- Project starts in 2027.
- Facility has 250 vehicles, 80% of which will be electrified by 2035 (planned acquisitions in 2028, 2030, and 2032).
- Four vehicles will share each port.
- 80% of ports L2 (19.2 kW)
- 20% of ports DCFC (50 kW)

BASIC INPUTS

Instructions: Enter inputs to yellow cells. View outputs in purple cells and graphs.

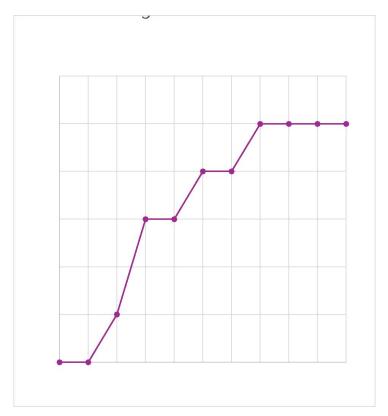
	UserInputs	Units	Notes
Total Vehicles in Operation	250	Vehicles	Enter total number of vehicles operating for this use case.
Target EV Adoption Proportion	80%	%	Enter the target maximum proportion of fleet to be electrified.
Vehicle to Port Ratio (Optional)	4	Vehicles per Port	Enter the ratio of vehicles to charging ports.
Type of Building Project (Optional)	Renovation at Existing Facility	N/A	Select the type of building project.
RequiredElectricalInfrastructure Upgrades	Low	None/Low/High	Select the level of electrical infra structure upgrades needed.
Year of Distribution System Upgrades (Optional)	2027	N/A	Select the year in which distribution system upgrades are planned to occur. Default 2025
L2Power Capacity (Optional)	19.2	k₩	Enter the power capacity of the L2 ports to be installed. Default: 192 kW
DCFC Power Capacity (Optional)	50	kW	Select the power capacity of the DCFC ports to be installed. Default: 50kW

FLEETINPUTS

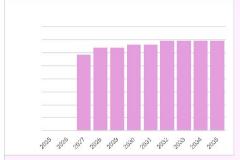
structions: Allocate the 200 electric vehicles between years in the yellow cells based on the planned development time!

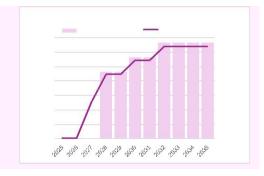
EVs Operating in Fleet Target		200		RemainingEV Procurements to Allocate								
Project Year	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	Total
EVs Procured for Use Case				100		60		40				200
% of Total Installations	0%	0%	0%	50%	50%	80%	80%	100%	100%	100%	100%	

CHARGING INPUTS

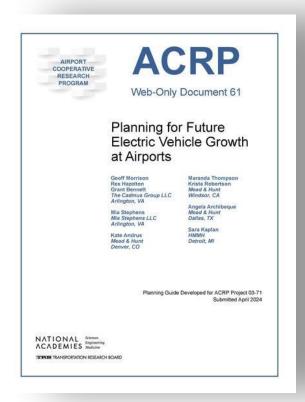

Instructions: Allocate the 50 charging ports between years in the yellow cells based on the planned development timeline

InstalledChargingPorts Target		50		RemainingChargingPorts to Allocate		0							
Project Year	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	Total by Type	% by Type
Level 2ChargingPorts				20		10		10				40	80%
DCFC Charging Ports			10									10	20%
Total Installations	0	0	10	20	0	10	0	10	0	0	0	50	
% of Total Installations	0%	0%	20%	60%	60%	80%	80%	100%	100%	100%	100%		




Long-Term Parking Scenario

Learning Application 8



Year	Annual Electricity Consumption from EVs (MWh)	Annual Peak Load (kW) (Assumes 80% of ports used concurrently)			
2025	0	0			
2026	0	0			
2027	0	288			
2028	929	509			
2029	929	509			
2030	1,131	620			
2031	1,131	620			
2032	1,333	730			
2033	1,333	730			
2034	1,333	730			
2035	1,333	730			

FOR ADDITIONAL INFORMATION

Download here:

https://nap.nationalacademies.org/catalog/27889/planning-for-future-electric-vehicle-growth-at-airports

Geoff Morrison

Geoffrey.Morrison@Cadmusgroup.com

Rex Hazelton

Daniel.Hazelton@Cadmusgroup.com

Jacqueline Kuzio

j-kuzio@tti.tamu.edu

Texas A&M
Transportation
Institute

Geoff Morrison

geoffrey.morrison@cadmusgroup.com

CADMUS

Rex Hazelton
daniel.hazelton@cadmusgroup.com
CADMUS

Kingsley Coppinger kingsley.coppinger@flyaustin.com

ACRP 20th Anniversary

September 26th is ACRP Day!

Celebrate 20 years of industry-led research and share the ACRP resources that you value the most.

www.trb.org/ACRP/ACRP20Anniversary

Get Involved!

- Feature your airport on our interactive map
- Join the ACRP Day social event with #ACRPImpact
- Advance ACRP research and programs

Other Events for You:

September 24, 2025

TRB Webinar: Choosing and Implementing Airport Capital Project Delivery Methods

October 30, 2025

TRB Webinar: Implementing and Improving Data Analytic Capabilities in Airports

https://www.nationalacademies.org/trb/events

Subscribe to the newsletter for the most recent TRB news & research:

Get involved with TRB

Receive emails about upcoming webinars: https://mailchi.mp/nas.edu/trbwebinars

Find upcoming conferences: https://www.nationalacademies.org/trb/events

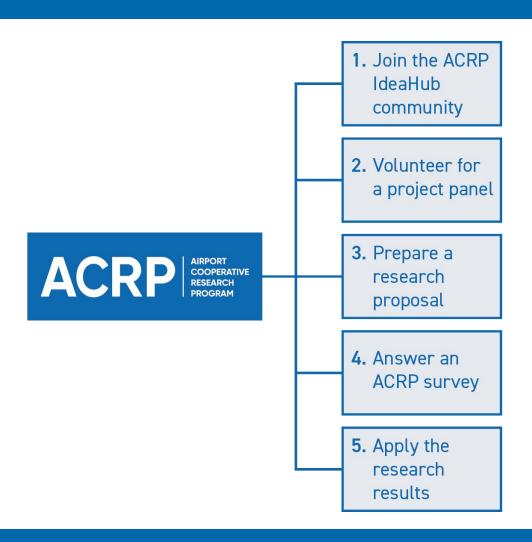
Get Involved with TRB

Be a Friend of a committee bit.ly/TRBcommittees

- Networking opportunities
- May provide a path to Standing Technical Committee membership

Join a Standing Committee bit.ly/TRBstandingcommittee

Work with CRP https://bit.ly/TRB-crp


Update your information <u>www.mytrb.org</u>

Getting involved is free!

Get involved with ACRP

Visit us online:

ACRP Recorded Webinars

Have you missed a past ACRP webinar that you wish you could have attended?

No worries! All ACRP webinars are recorded and posted to TRB's website for viewing at any time.

There are over 100 webinar recordings on a variety of aviation topics available to you at:

https://www.nationalacademies.org/events

Select "Past Events" tab and search for "TRB Webinars".

