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A minimal cell would be the hydrogen atom of
biology

Minimal bacterial cell JCVI-syn3.0
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Approach Used to Build a Synthetic Bacterial Cell
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Strategy for whole genome synthesis
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Oligo Design
and Syntﬂesis
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Booting up a synthetic genome using whole
genome transplantation

tetR

IAOr



Our naive starting model for transplantation of tetR

donor genomes into recipient cells

tetR
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Cell growth and division leads to daughter cells
with different genomes
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Transplanted genome has a tetracycline resistance gene.

Only cells with that marker grow in the presence of tetracycline.
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We are still at the dawn of making
living “synthetic cells”

» Genome synthesis is solved: we can synthesize any
bacterial genome needed as a yeast artificial chromosome

» Genome synthesis may become fast and cheap

3417 LOVdINI AT3AILISOd OL SOINON3IO ONIY3INOId IA ’r

12



Avery Digital is scaling biological experimentation
on nanofluidic chips

Ed Al-Assisted Design
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We are still at the dawn of making
living “synthetic cells”

* Booting up the genomes is much harder

* Whole genome transplantation only works for mycoplasmas
» We still do not know much about how cells function

* One cellular chassis for all synthetic cell needs and
universal interchangeable parts are unlikely
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In 2010 the scientific community called JCVI-
syn1.0 a “synthetic cell”
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Today, it is not a synthetic cell, but rather a cell
with a synthetic genone
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Building a living synthetic cell from
non-living parts

0.5-2.0 ym
vesicles
TXTL +
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cvtoplasmic multi- nozzle for extrus!on
Myccﬁtlﬁrsg 7 eil(trgct TXTL transporter of mycoplasma-like
plasmid TXTL extract filled

system _
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Building a living synthetic cell from
non-living parts

Genome
Transplantation
to install
genome
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Synthetic cells as intracellular bacterial
endosymbionts of eukaryotes
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Mitochondria & Chloroplasts evolved
from intracellular bacteria

Thylakoids
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JCVI cells with synthetic genomes are
being engineered to function as
intracellular symbiotes

_ Mycoplasma
. 4cells are not
4 pathogenic &
“ might be
W engineered to
solve metabolic
problems
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Human Artificial Chromosomes (HACSs)

CENP-A deposition Alignment on the mitotic spindle

Lacl-HJURP , Spindle microtubules .
-
CENP-A ! _
HAC
b

—_—

Native chromosome %

. Chromosome
Single copy DNA alignment proteins
containing gene cargo
CENP-A and other
centromere proteins

Efficient formation of single-copy human artificial chromosomes, Science, 03/21/24
Engineering better artificial chromosomes, Science, 03/21/24
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Multi-million bp HACs may let us...

= Anti-cancer therapies better than current CAR-T approaches

» Gene therapy using whole genes (introns & exons) to reduce
gene silencing characteristic of some approaches

= Build cells with designer antibody repertoires to protect against
multiple infectious diseases

» Modify human cells for therapeutic purposes that need multiple
new genes expressed

* Transgenic animals with large sets of human genes for
replacement organs

= Plant artificial chromosomes
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HAC technology prior to Penn-JCVI single

- copy HAC
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Approach Used to Build a HAC
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Construction & delivery of Penn-JCVI
single copy HAC

In vitro

In wivo
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Efficient formation of single-copy human artificial chromosomes, Science, 3/21/24,

G418-5
selection

Polyclonal cell
population

1 FACS

Monoclonal ines



10111
o1



. December 12, 2024
SClence POLICY FORUM
Confronting risks of mirror life

Broad discussion is needed to chart a path forward
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A chemical structure model of a naturally occurring amino
acid, L-tryptophan (left), is shown with it mirror image (right ).



It Takes a Village to Create a Cell
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It Takes a Village to Create a Cell
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