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Potential Magnitude of Environmental Effect

Q Negligible . Minimal Moderate . Major

Potential Environmental Effect

EMF Effects
- Potential to affect animal behavior, but unlikely to
substantially alter survival and reproduction.

Habitat Alterations

- Potential for structures along the seafloor to provide
new habitat via the “reef effect”, though the
installation of artificial substrates may also invite
colonization by non-native species.

- Potential for bottom, midwater, and surface structures
to act as fish aggregation devices and for OWFs as a
whole to act as de facto marine protected areas.

Noise Effects
- Unlikely to pose risk to marine species as operational
noise of OWFs is low frequency and at low levels.
- Empirical measurements still needed for deepwater,

floating OWFs.

Water Quality
- Preemptive measures to prevent biofouling and
corrosion may introduce toxins on a local scale,
though adoption of environmentally-friendly
alternatives can reduce risk to marine species.

Atmospheric & Oceanographic Dynamics
- Expected to reduce downstream wind speed, though
existing literature rarely report concordant estimates.
- Potential to alter local wave patterns, vertical mixing,
and seasonal stratification. which could have
cascading effects on carbon pump, biomass
distribution, and sediment dynamics.

Structural Impediments
- Potential to increase avoidance, displacement,
collision, and entanglement risk for many marine
species.
- Use of promising, albeit minimally tested, mitigation
measures may substantially reduce impacts on
species’ behavior, fitness, and survival.

Farr et al. (2021)
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Do offshore wind turbines have the potential to impact coastal
upwelling and consequently nutrients and productivity?



Background and Motivation

Project funded by California Energy Commission (2020-2023)
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Background and Motivation

Modeled wind-farm induced changes in the North Sea
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Project Goals and Objectives

1. Evaluate the potential effects of California OSW farms on circulation (i.e., upwelling)
and biogeochemistry (nutrients, productivity) off the U.S. west coast.

2. Compare simulated biogeochemical impacts of OSW farms with impacts projected
due to climate change in coming decades.
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Modeling Configuration
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Atmospheric Modeling

Weather Research and Forecasting (WRF) model ROMS model domain
with Wind Farm Parameterization

Morro Bay, Humboldt, Coos Bay, Brookings wind
energy areas

1I5MW and 20MW turbine build-outs
3km resolution for full domain

1995-2019
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Ocean Modeling

3km resolution for full domain

1995-2019

Atmospheric forcing w/ and w/out turbines

X_Cape Blanco

Physics (ROMS) + Biogeochemistry (NEMUCSC)

x_Cape Mendocino
Nutrients |
Monterey Bay |
Oxyg en Pt. Conception .

Two phytoplankton groups

Three zooplankton groups



Wind Speed
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Upwelling Season (March - July)

Upwelling Intensity Average of 15MW and 20MW simulations
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Upwelling Season (March - July)

w Average of 15MW and 20MW simulations
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Upwelling Season (March - July)

w Blomass Average of 15MW and 20MW simulations
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Zooplankton Biomass
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Upwelling Season (March - July)

Md:s Average of 15MW and 20MW simulations

Upwelling Nitrate Supply Phytoplankton Zooplankton




Working Hypothesis -. 1)

Plankton changes are offset from upwelling
changes due to temporal lags + advection

Plankton




Working Hypothesis

Changes in upwelled nitrate




Working Hypothesis

Changes in upwelled nitrate

Particles released in area of
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Working Hypothesis

Changes in upwelled nitrate
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Working Hypothesis Particles released in area of

decreased nitrate supply
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Working Hypothesis

Changes in phytoplankton Changes in zooplankton Difference
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Project Goals and Objectives

2. Compare simulated biogeochemical impacts of OSW farms with impacts projected
due to climate change in coming decades.



Offshore Wind Impacts in the Context of Climate Change

Projected end-of-century changes under high emission scenario
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Offshore Wind Impacts in the Context of Climate Change

Projected end-of-century changes under high emission scenario
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Offshore Wind Impacts in the Context of Climate Change

Wind farm impacts are patchy mosaics of positive and negative. Neither natural variability nor climate
change induce similar patterns in upwelling.

Impacts of northern areas (Humboldt, Coos Bay, Brookings) are harder to discern, likely because they are
smaller and interact with each other.

Nearshore, wind farm impacts on phytoplankton are smaller than projected climate change impacts
(under high emissions scenario). Offshore, they can be comparable.

Presumably, more offshore wind development accompanies lower emissions scenarios. If so, the relative
impact of offshore wind will increase as emissions decrease.



