

Today's Learning Objectives

- 1. Use a framework, process, and tools to quantify the impact of delayed preventive maintenance on airport budgets and assets
- 2. Explain how an asset management plan supports preventive maintenance and extends asset service life

American Association of Airport Executives (AAAE)

1.0 Continuing Education Units (CEUs) are available to Accredited Airport Executives (A.A.E.)

Report your CEUs:

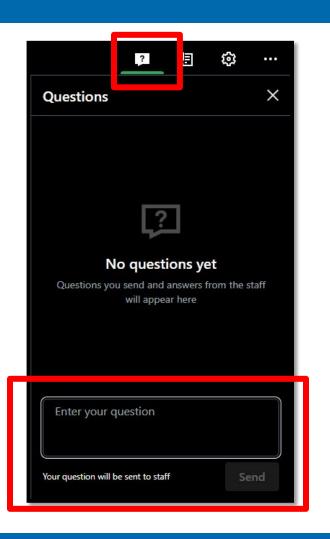
www.aaae.org/ceu

American Institute of Certified Planners (AICP)

1.5 Certification Maintenance Credits

You must attend the entire webinar to be eligible for credits

Log into the American Planning Association website to claim your credits



Questions and Answers

Please type your questions into your webinar control panel

We will read your questions out loud, and answer as many as time allows

#TRBwebinar

Today's Speakers

Pramen P. Shrestha, PhD, PE, F. ASCE pramen.shrestha@unlv.edu
University of Nevada, Las Vegas

Bill Robert
wrobert@spypondpartners.com
Spy Pond Partners

ACRP Report 273

Quantifying the Impacts of Delayed Maintenance of Airport Assets A Guide

Pramen P. Shrestha, PhD, PE, Fellow ASCE Bill Robert

Pramen P. Shrestha, PhD, PE, F. ASCE Principal Investigator

- Professor and Chair, Civil & Environmental Engineering & Construction Department, University of Nevada, Las Vegas
- Over 20 years of research experience on Asset Management, Life-Cycle Cost Analysis, and Project Management
- * 8 Years of professional experience on infrastructure design and build projects

Bill Robert Senior Analyst

- Partner, Spy Pond Partners
- Experienced in asset management for highway, transit and airports
- → Senior Analyst for NCHRP Projects 14-20 and 14-20A on effects of delayed maintenance for highway assets
- Principal Investigator
 - NCHRP Project 23-06 on asset valuation
 - TCRP Projects E-09, E-09A, E-11 and E-12 on transit asst management

ACRP Report 273 Oversight Panel

Marianne Csaky, LanzaJet, Panel Chair Kimberly A. Kenville, University of North Dakota, Panel Vice Chair Balram "B" Bheodari, Hartsfield-Jackson Atlanta Int. Airport Darryl Daniels, Jacobsen Daniels Associates John Dermody, Federal Aviation Administration Rhonda Hamm-Niebruegge, St. Louis Lambert Inter. Airport Lance Lyttle, Seattle-Tacoma International Airport Chad Makovsky, City of Phoenix Scott McMahon, Morristown Municipal Airport Frank R. Miller, Burbank-Glendale-Pasadena Airport Authority Ramon Ricondo, Ricondo and Associates, Inc. Steve Sisneros, Southwest Airlines Cathryn Stephens, Eugene Airport

Introduction

Scope and Objectives

- Airport owners do not have sufficient funding to conduct preventative maintenance of their assets
- Preventative maintenance planning is key in maximizing their assets' life
- This study provide the guide and tool to help airport owners to quantify the impact of delayed maintenance
- Objectives
 - Identify maintenance budget preparation processes
 - Develop framework to quantify the consequences of delayed maintenance
 - Develop spreadsheet tool to quantify the impact of delayed maintenance of 4 airside and 5 landside assets

Research Approach

Phase I

- Literature Review, Interviews with Airport Asset Managers to identify
 - State of practices in asset management and maintenance planning
 - Framework, tools, and models to predict impact of delayed maintenance in airport and another assets

<u>Phase II</u>

- Data Collection to develop
 - Framework, models, and spreadsheet tools to determine the impact of delayed maintenance for 9 airport assets

Summary of Relevant Literature

General Asset Management References

- → AASHTO Transportation Asset Management Guide: A Focus on Implementation, 2nd Edition (2020)
 - Digital version at <u>www.tamguide.com</u>
- → International Infrastructure Management Manual (IIMM), 6th Edition (2024)
- → Institute for Asset Management (IAM) Asset Management Anatomy Version 4 (2024)
- → International Standards Organization (ISO) 55000 Series: Asset Management

Airport-Specific Literature

- → ACRP Report 69: Asset and Infrastructure Management for Airports Primer and Guidebook (2012)
- → ACRP Report 138: Preventive Maintenance at General Aviation Airports (2015)
- → ACRP Report 172: Guidebook for Considering Life-Cycle Costs in Airport Asset Procurement (2017)

Lessons Learned from Prior Research

<u>Lesson 1: Importance of Asset Management and Maintenance is Well Established</u>

- → ISO 55000 and IAM Asset Anatomy establish overall standards
- → Other guides reviewed translate provide details on concepts e.g., the AASHTO TAM Guide and the IIMM
- → ACRP Reports 69 and 138 put asset management concepts into context for airports

<u>Lesson 2: Specific Quantification of Costs and Benefits of Asset</u> <u>Maintenance Is Elusive</u>

- Most guidance is high-level, often applicable to a wide range of asset classes and modes
- → In many cases the argument over importance of asset management is settled, thus there is little focus on demonstrating benefits of maintenance
- Quantifying the benefits can require consideration of difficult-to quantify factors such as asset costs, maintenance cost, and failure risk

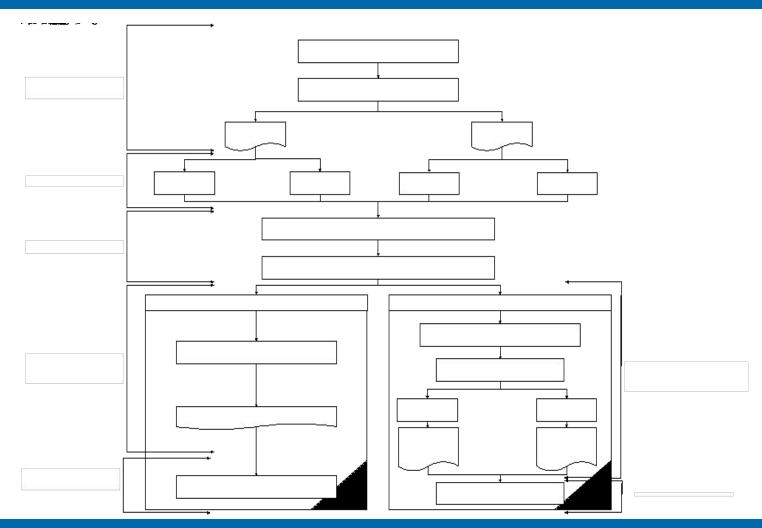
Impact of Delaying Maintenance

Airport Asset Classifications

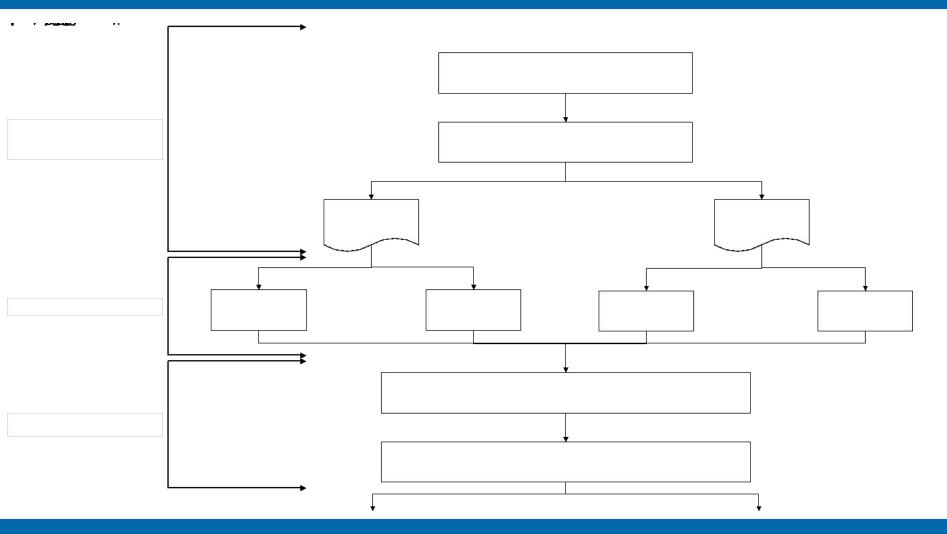
Asset Classes

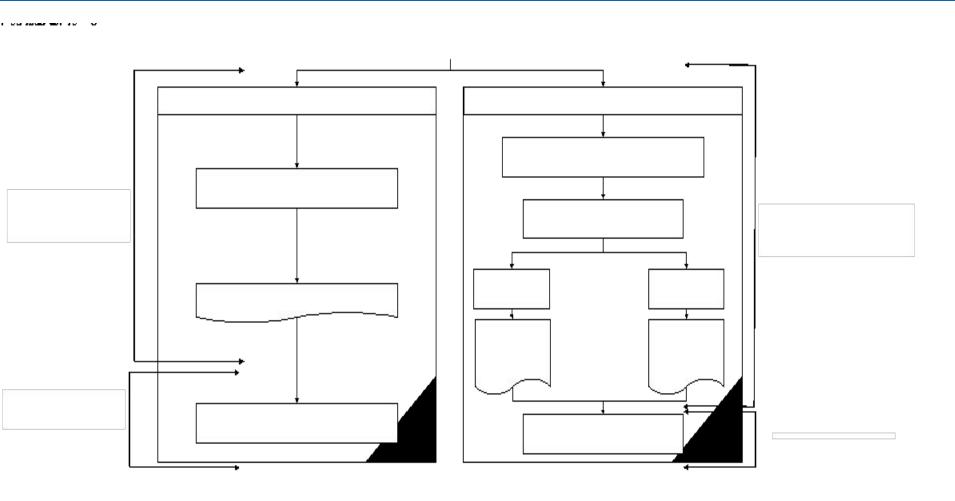
- → Airside
 - Primary Runway Pavement
 - Airfield Markings
 - Runway Lighting
 - Airfield Signs
 - Airfield Visual & Navigational Aids (NAVAIDS)

→ Landside


- Airport Service Vehicles Pickup Trucks
- Airport Snow Removal Equipment
- HVAC Systems
- Baggage Handling System
- Passenger Boarding Bridges
- Airport Hangars
- Terminal & Administrative Buildings
- ARFP Pickup Truck
- Fuel Faculties
- Automated People Mover Systems

TREE TRANSPORTATION RESEARCH BOARD


Framework for Quantifying Delayed Maintenance – Primary Runway Pavement



Framework for Quantifying Delayed Maintenance – Primary Runway Pavement

Framework for Quantifying Delayed Maintenance – Primary Runway Pavement

Spreadsheet Tool to Calculate Impact of Delayed Maintenance

Modeling Approach Used

- Spreadsheet will calculate
 - Regular Maintenance Cost
 - Deferred Maintenance Cost Delayed Scenario
- For Airport Runway Pavement Deterioration Curves Used
 - Asphalt and concrete PCI has relationship with age of the pavement
- → For Equipment Modeling Probability of Failure
- → Simulate application of each strategy and compare costs

Spreadsheet Tool to Calculate Impact of Delayed Maintenance

Asset and Maintenance Costs

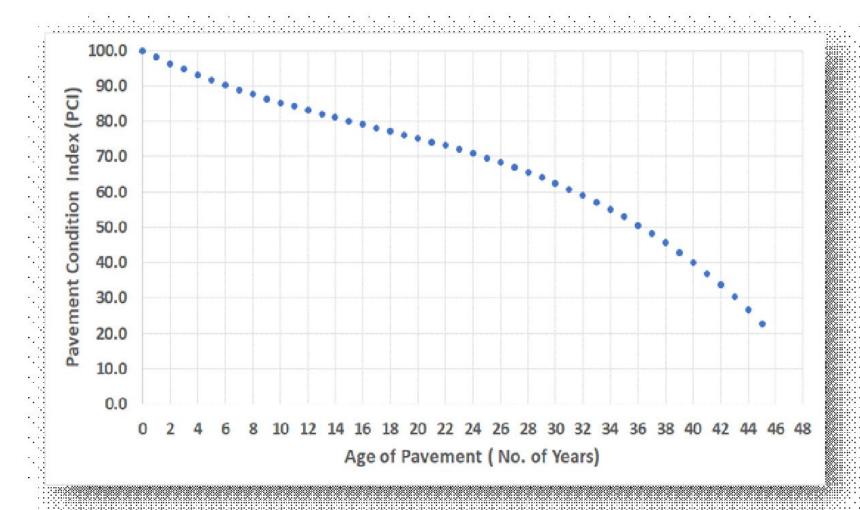
- → Asset purchase cost is based on 2022
- → However the cost will be adjusted based on the inflation factor used in the spreadsheet
- → If the airport wants to use their own purchase cost, they can overwrite the cost used in the spreadsheet
- → Maintenance cost used in the spreadsheet is based on 2022 and collected during the research.
- → If the airport has their own maintenance cost, the airport can overwrite the maintenance cost

Spreadsheet Tool to Calculate Impact of Delayed Maintenance

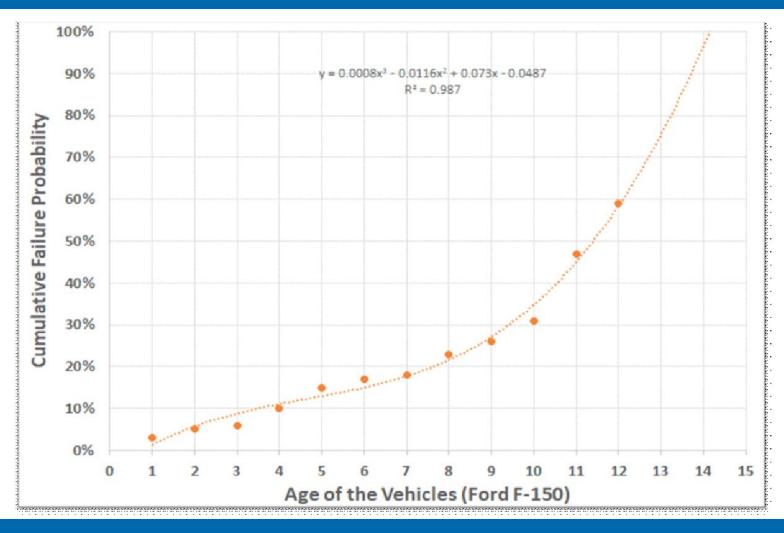
<u>Inflation & Time Value of the Money</u>

- → The tool can be used in the future. If the cost database used in the spreadsheet must be inflated
- → The cost inflation factor can be selected or input by the airport
- → In delayed scenarios
 - The airports can select the number of years to be delayed (Maximum of 10 years of delayed maintenance)
 - To convert the future value to present value of delayed maintenance costs, the airport can select the discount rate
 - The maximum discount rate used in the spreadsheet is
 7%

Condition of Airport Pavement (FAA PAVEAIR)


Condition Category

- Pavement Condition Index (PCI)
 - PCI 85 to 100 Minimum preventative maintenance
 - PCI 70 to 85 Some preventative maintenance required
 - PCI 55 to 75 High preventative maintenance required
 - PCI 55 to 40 –
 Rehabilitation
 - PCI below 40 Reconstruction



Relationship between Age of Pavement & PCI

Cumulative Failure Probability Ford F-150

Spreadsheet Calculation Limitations

Recomendations

Airports may use the spreadsheet tool to estimate the regular
 & delayed maintenance cost to prepare a budget

Constraints

- Airports must use the failure probability provided in the model
- → If the airport does not have initial asset costs and maintenance cost, the delayed maintenance cost might not be accurate
- → In regular scenario, the research team has collected the maintenance cost, it might not be accurate for each airport

Airport Runway Pavement Delayed Maintenance Calculator

Airport Pavement Delayed Maintenance Cost Calculator		
irport Name		
ocation		
Description (Input Measures)	Values	
nter Budget Preparation Year	2022	
elect Pavement Type	Asphalt	-
nter Length of Runway (Ft)	9000	
nter Width of Runway (Ft)	150	Override Pavement Area
rea of Runway (Sqft)	1350000	
elect Condition of Runway Pavement based on Age or Pavement Condition Index (PCI) Value	PCI Value	1
nter PCI Value	70	
June 1		
escription (Output Measures)		
ge of Runway and PCI Value in 2022 Year		
ge of Runway Pavement based on PCI Value (Years)	14	
CI Value based on Age of Runway Pavement	70.0	
Taintenance Cost Calculation for 2023 Year		
ge of Runway Pavement (Years)	15	
CI Value of Runway Pavement	68.1	Override 2022 Cost/Sqft
laintenance Cost per Sqft in Year 2022	\$3.43	
otal Maintenance Cost in Year 2023	\$4,769,850	
Maintenance Cost Calculation in Delayed Scenario		
elect # Years to be Delayed	2	
ost inflation Factor per Year for Asphalt (%)	2.93%	
elect Discount Rate (%)	0	
otal Maintenance Cost in Delayed Scenario		
ge of Runway Pavement in Year 2025	17	
CI Value of Runway Pavement in Year 2025	62.1	
laintenance Cost per Sqft in Year 2025	\$8.18	
otal Maintenance Cost (Future Value) - Year 2025	\$11,042,741	
otal Maintenance Cost (Net Present Value) - Year 2023	\$11,042,741	

Spreadsheets Available (

Quantifying the Impacts of Delayed Maintenance of **Airport Assets**

A Guide

(2024)

Download Free PDF

Read Free Online

Buy Paperback: \$25.00

Buy Ebook: \$20.99

Epub, Kindle, MobiPocket What is an Ebook?

Preventive maintenance is crucial to help improve and extend the life cycle of airport facilities, systems, and components. An asset management plan implements preventive maintenance and allows an asset to reach its maximum life cycle or service life without a reactive approach.

[read full description]

Contributor(s): National Academies of Sciences, Engineering, and Medicine; Transportation Research Board; Airport Cooperative Research Program: Pramen P. Shrestha; Scott Murrell; Brian Aho; William Robert Williams; Dawn S. Ward; Ghada G. Gad-

SHARE IN Y f X

Login or Register for a free MvNAP member account to save 10% off online and receive other benefits. [Learn More]

If you or your organization are involved with TRB, log into MyTRB to secure potential publication discounts.

RESOURCES AT A GLANCE

Delayed Maintenance Cost Calculator for Airfield Markings

Delayed Maintenance Cost Calculator for Airport Baggage Handling Systems

Delayed Maintenance Cost Calculator for Airport Passenger **Boarding Bridges**

Scroll Down for More Resources

Activate Windows

Q & A Session

Email:

Pramen.Shrestha@unlv.edu Wrobert@spypondpartners.com

ACRP Report 273

THANK YOU TO ALL OUR WEBINAR PARTICIPANTS

Pramen P. Shrestha, PhD, PE, F. ASCE pramen.shrestha@unlv.edu
University of Nevada, Las Vegas

Bill Robert
wrobert@spypondpartners.com
Spy Pond Partners

TRE TRANSPORTATION RESEARCH BOARD

Other Events for You:

July 8, 2025

TRB Webinar: Improving Airport Curbside and Roadway Operations

July 23, 2025

TRB Webinar: Planning for Shock Events in Aviation Demand Forecasting

https://www.nationalacademies.org/trb/events

Subscribe to the newsletter for the most recent TRB news & research:

Get involved with TRB

Receive emails about upcoming webinars: https://mailchi.mp/nas.edu/trbwebinars

Find upcoming conferences: https://www.nationalacademies.org/trb/events

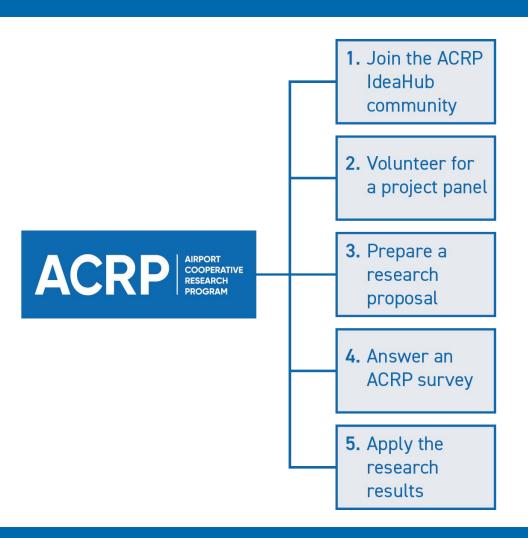
Get Involved with TRB

Be a Friend of a committee bit.ly/TRBcommittees

- Networking opportunities
- May provide a path to Standing Technical Committee membership

Join a Standing Committee bit.ly/TRBstandingcommittee

Work with CRP https://bit.ly/TRB-crp


Update your information <u>www.mytrb.org</u>

Getting involved is free!

Get involved with ACRP

Visit us online:

ACRP Recorded Webinars

Have you missed a past ACRP webinar that you wish you could have attended?

No worries! All ACRP webinars are recorded and posted to TRB's website for viewing at any time.

There are over 100 webinar recordings on a variety of aviation topics available to you at:

<u>https://www.nationalacademies.org/events</u>
Select "Past Events" tab and search for "TRB Webinars".

