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10km gridded global output of water, 
energy, and carbon fluxes (2003-2020)
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Global water cycle reanalysis informed by remote sensing observations of precipitation 
(GPM), soil moisture (SMAP), leaf area index (MODIS), and terrestrial water storage (GRACE 
and GRACE-FO), MODIS-based snow water equivalent, SWOT water level, … 



The RobustSTL (seasonal-trend decomposition loess algorithm) is used to decompose the 
time series (from the reanalysis) into trend, seasonality, and remainder (extremes) 
components  

X = Xlong + Xsea + Xrem

The nonstationarity index is then calculated 
as a normalized measure of the percentile 
ranking of each of the three component 
terms

Xlong

Xsea

Xrem

Nie et al. “Nonstationarity in the global terrestrial water cycle and its interlinkages in the Anthropocene”, PNAS, 2025 



• 15 out of 20 regions have non-
stationary water cycle changes
dominated by trend component,
with 14 of them showing a
depletion.

• 5 regions have non-stationarity
dominated by seasonal shifting.

• Half of the regions have more
than 10% area dominated by
extreme frequency ratio,
indicating different level of
extreme increases with
significant abrupt changes.

Nie et al. “Nonstationarity in the global terrestrial water cycle and its interlinkages in the Anthropocene”, PNAS , 2024 



• Nonstationarity in the driving meteorology is less strong

precipitation

• The nonstationarity impacts on ET and runoff are mixed 

ET Runoff

TWS



• For irrigated south Asia, 
depletion of TWS due to 
GW pumping has 
supported crop growth. The 
reduced water availability 
and increased vegetation 
leads to mixed impacts in 
ET. 
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 1085 
 1086 
Fig. 3 Changes in fluxes for selected nonstationary hot spot regions and its relative contributors. Monthly anomalies relative 1087 
to the long-term mean are shown for TWS, ET, runoff, and precipitation while annual anomalies are shown for GPP averaged for 1088 
each region. Solid (dashed) lines indicate statistically significant (insignificant) annual trend according to the Mann-Kendall 1089 
trend test at 5% significance level.  Distribution of nonstationarity index for the five fluxes are shown in boxplots with the black 1090 
dots indicating the regional mean of NSI. The pie chart on top of each boxplot summarizes the percent of area maximumly 1091 
contributed by positive (negative) long-term trend, seasonal variation, or intensified (dampened) extreme occurrence. The 1092 
results for the other 10 hotspot regions are shown in Extended Data Fig. 9. 1093 
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Region 5 (South America Eastern Highlands)
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Region 9 (North Africa)
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Region 14 (Indus)
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Region 18 (Northern China)
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Region 13 (Eastern Middle East)
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Region 19 (Eastern Russia)
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How do we usually compute measures of extremes (e.g. droughts)? 

From the time series of a geophysical variable (e.g. soil moisture, groundwater), identify conditions that 
are below a specific threshold

Percentile < 30%

Percentile < 20%

Percentile < 10%
Percentile < 5%
Percentile < 2%

Implicit assumption

The underlying distribution that defines the 
“norm”/climatology is time-
invariant/stationary



What does this mean for quantification of extremes? 

Stationary

Nonstationarity from trends

Nonstationarity from 
seasonal shifts

Nonstationarity from extreme 
frequency changes

Nie et al. “Anthropogenic influences on the water cycle amplify uncertainty in drought assessments”, One Earth (2025). 



Large errors in drought estimation when nonstationarity is not acknowledged!

Several (~100) scenarios for estimating drought were considered, using different periods for reference data and climatology

Median bias in drought estimation across the ensemble members relative to 
a stationary assumption

IQR in drought estimation across the ensemble members



Summary

• Data sources: Nonstationarities in the 
terrestrial water cycle is dominated by 
management influences – therefore, 
remote sensing observations are key (the 
only way) to capture these impacts 
accurately. 

• Metrics and indicators: Current metrics 
reliant on stationary assumptions can lead 
to large errors based on the period of 
record and sampling windows. 

• Methodologies to address non-stationarity: 
Deviations (in drought metrics) from 
stationary assumptions can be used to 
quantify underlying uncertainties 

North American Land Data Assimilation System Phase 3
(NLDAS-3)
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