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CRaTER ESMD Measurement Goals
Goals of this presentation:

• Review measurements from LRO’s CRaTER instrument with focus on those 
studies that are most relevant to questions posed by the NAS LDHE panel:

• What are the properties of radiation shielding by regolith?
• Does radiation shielding differ according to location?
• Are charging effects different in different regions?
• What investigations must be conducted in situ to inform these applied 

science/engineering questions?

• Presentation contains material with greater depth than I can cover in 15 
minutes, but is provided for completeness and with your study in mind
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Cosmic Ray Telescope for the Effects of 
Radiation (CRaTER) Investigation

(Spence et al., Space Sci. Rev., 2010)

• Launched on NASA’s Lunar 
Reconnaissance Orbiter 
(LRO) in June 2009

• Nadir/Zenith viewing along 
“telescope” axis

• Designed to estimate Linear 
Energy Transfer of galactic 
cosmic rays and solar 
protons near the Moon
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CRaTER ESMD Measurement Goals
To characterize the global lunar radiation environment and its 
biological impacts

• Six-element, solid-state detector and tissue-equivalent plastic (TEP) telescope

• Sensitive to cosmic ray particles with energies greater than ~10 MeV, primarily protons (but also 
heavy ions, electrons, high energy photons, neutrons, and other subatomic stuff)

• Galactic cosmic rays – GCRs
• Solar energetic particles– SEPs

• Measure spectrum of Linear Energy Transfer (LET = energy per unit path length deposited by 
cosmic rays as they pass through or stop in matter) behind different amounts of TEP

• Accurate LET spectrum was missing link needed to constrain radiation transport models and 
radiation biology
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LET Spectra & Shielding: Galactic Cosmic Rays

•CRaTER is providing high-
resolution estimates of LET from 
GCR over the course of the mission
•Thin-thick pairs permit exploration 
of the LET spectrum from the low 
end, dominated by protons to the 
high end dominated by heavy ions
•Evolution of LET through the  
various sections of TEP are 
allowing us to explore  and test 
theories of space radiation 
shielding

After Case et al., 2013; Zeitlin et al., 2013; and Porter et al., 2013
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LRO and the “Wargo Axiom”

“Science enables 
Exploration; Exploration 

enables Science” 

“Luna Ut Nos Animalia 
Tueri Experiri Possimus 

(Luna TEP)”
(“In order that we might be 

able to protect and 
make trial of living things on 

the Moon”)http://crater.unh.edu

Design driven by human exploration, but nimble enough for innovative science
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Lunar Science Enabled by Exploration
• GCR primaries give up energy and produce secondaries
• Escaping secondary interactions with regolith provide tell-tale signs of material they traversed

• Ex: Neutron/gamma lunar imaging used to probe regolith for subsurface regions of hydration

• GCR primaries (and secondaries!) provide not only an ionizing radiation source, but also a means for 
scientific exploration of the lunar surface

From Spence et al., 2013

From Wilson et al., 2013; 2015
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Several Representative Vignettes 
Demonstrating Interplay between 

Lunar Exploration and Lunar Science
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Relative distribution of 
all CRaTER publications 

during LRO mission 
according to topical 

foci of paper
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Vignette #1. 

Lunar Surface Radiation Mapping Including Measured Topography: 
Surface Features Produce Localized Radiation Shielding

• Work lead by Tim 
Stubbs and Phillip 
Phipps (NASA/GSFC)
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• Estimate radiation 
exposure relative to a 
planar surface where 
topography provides 
natural shielding from 
GCR exposure

•  Values <1.0 indicates 
that shielding is 
provided by terrain 
relative to a locally 
planar surface

On Beyond the Spherical Cow 

• By way of example, we show a simple lunar crater w/ 20 km 
diameter and 3 km depth

• Crater (not CRaTER) walls provide shielding from portion of 
sky, thus decreasing net exposure by ~40% in this case

(Stubbs et al., 2020)
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• Global map of 
relative radiation 
exposure at 16 
pixels per degree 
(<2 km per pixel) 
using LOLA DEMs

• Computationally 
intense!

Act Locally, Think Globally

(Phipps et al., 2022)
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Artemis III Landing Site Assessments
• Radiation dose from SEP 

events can be extremely 

hazardous

• Radiation Exposure differs by 

<10% between the 13 regions

• Most regions offer better than 

average shielding (when 

compared to South Pole)

• Predictive location-specific 

models critical to developing 

effective mitigation strategies

• Locations identified for 

exploration (e.g., the rim of 

Shackleton crater) are 

associated with an increased 

risk of radiation exposure 

relative to other locations on 

the lunar surface

Maps of Predicted Radiation Dose to an Astronaut for October 1989 SEP (Worst Case Scenario)
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Vignette #2. 

Precise Detections of Solar Particle Events and 
a New View of Secondary Radiation Emerging 
from Regolith: Secondary Radiation Varies With 
Regolith Composition

• Jody Wilson (UNH) lead
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• GCR (low flux, incessant, high energy) and Solar 
Protons (intense flux, episodic, lower energy) yield 
different lunar radiation environments

• Serendipitous SEPI invented to “pluck out” offending 
solar proton events from background 

“If thine eye offend thee, then pluck it out…”

• SEPI correlated with traditional solar p+ measures 
(GOES PFU)

• SEPI is an as-yet fully quantified combination of 
lunar albedo protons, neutrons, and gamma rays 
(work in progress)

(Wilson et 
al., 2019)
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• Take SEPI (constructed in time domain from CRaTER’s simple secondary science data) and map it spatially
• Unlike all earlier CRaTER albedo maps, SEPI map looks like Moon with ease!
• Refined map (”D6” in right figure) closely resembles LP gamma-ray maps Th, K, and FeO

From Trash to Treasure – SEPI Rehabilitated!

(Wilson et al., 2020)

(Jordan et al., work in progress, 2025)
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Vignette #3. 

Spatial Distribution of Deep Dielectric 
Discharging (DDD) of Regolith:  Avoid 
the Poles!

• Work led by Andrew Jordan (UNH)
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DDD Effects Maximize in PSRs near Poles  

(Jordan et al., 2014)

Lunar North Pole

Lunar South Pole

80° lat
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• Solar particles can 
differentially charge 
regolith, setting up 
electric fields in the near 
surface regolith

• If charging rate exceeds 
dielectric properties, 
discharge can occur

• Temperature key to 
discharge likelihood; low 
temps in PSRs are most 
prone to DDD
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Summary and Conclusions

• Measurements from LRO’s orbit quantify the global radiation environment 
(primary and secondary) near the Moon and they provide insights about the 
radiation environment at the surface of the Moon → Need measurements at 
the surface to validate extension of LRO’s orbital measurements to surface

• Natural shielding of primary sources of ionizing radiation occurs owing to lunar 
topography → Optimize landing site position to maximize natural shielding

• Secondary radiation varies with location owing to compositional variability of 
lunar regolith → Choose landing sites to minimize exposure to worst or most 
difficult to shield secondary radiation

• Deep dielectric discharging represents a hazardous process at the Moon’s 
surface and likely an agent for regolith gardening during large SEP events →
PSRs near poles are regions prone to DDD as process depends critically on 
regolith temperature; not a likely issue at low latitude (< 80 degrees)

18
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Back up and Additional Information 
of Potential Relevance

19
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CRaTER Performance Specifications
CRaTER’s design has thick/thin detector pairs at 3 points through TEP:
• 3 “low LET” thick detectors (D2,D4,D6)
• 3 “high LET” thin detectors (D1,D3,D5)
• Energy resolution <0.5% (at max energy); GF ~1 cm2-sr (typical)

This corresponds to:
• LET from <0.2 keV/μ to 2 MeV/μ
• Excellent spectral overlap in the 100 kev/μ range (key range for RBEs)
• 100 kbps data rate – telemeter every pulse height in all six detectors whenever any one detector passes its detection 

threshold (i.e., no in-flight coincidence logic required, typical of similar sort of instruments)

D1,D2         D3,D4     D5,D6

TEP TEP
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Vignette #4. 

CRaTER Observations and Permissible Mission 
Duration (PMD) for Human Operations in Deep Space

• Wouter C. de Wet (UNH → now ORNL) lead
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• Lunar Gateway:  ~ 30 day missions (per mission, well below PMD)
• At solar min → ~7 (10) missions per female (male) astronaut
• At solar max → ~ ~11 (16) “                                                                 ”

• Mars:  Assume Hohmann transfer orbit….
• ~9 months (~275 days) each way to/from Mars (total ~550 days)

• One-way transit exceeds PMD for most females and only few males depending on phase;
Round-trip transit >PMD for all

• ~16 months for realignment plus transit (12,410 days!!);  higher energy orbit solution?

PMD: Moon versus Mars

Hohmann 
one-way

Hohmann 
one-way

Hohmann 
R/T

Female Male

High 
energy R/T

High energy R/T

(de Wet et al., 
2020)
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Vignette #5. 

Characterization of the Space 
Radiation Environment Through a 
Modern Secular Minimum

• Fatemeh Rahmanifard (UNH) lead
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“It's tough to make predictions, especially about 
the future” – Y. Berra

• LRO experienced Solar Cycle 24 (red curve)
• HMF and SW speed distribution weakest of 

Space Age; these control how much GCR makes 
it into solar system

• “Modulation Potential” is a quantitative measure 
of how effective GCRs are shielded by 
heliosphere

• Cycle 24 peak was ~750 MV (MegaVolts) 
compared to ~1200 MV in Cycles 21 and 22

• Unclear whether “floor” exists at 420 MV 
• In 2019, predicted Cycle 25 would be either 

much like Cycle 23 (Gleissberg, green) or 
extremely low (Dalton, blue)

• In late 2023, it is somewhere between, more like 
Cycle 24 (red curve from 2019 to present)!

(Rahmanifard 
et al., 2019)
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Where are we?  No Time Like the Present!

(Looper et al., 202X)
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• PMD for deep space conditions at 1 AU (L) from 1750 CE to 2018 CE (t) for 45-year-old (A) 
male (S, blue) and female (S, red) astronauts behind 20 g/cm2 Al shielding (G)

• Current PMDs are as low as in recorded sunspot history with exception of “Dalton Minimum” 
(1790-1820)

PMD Today and for a Quarter Millennium
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