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Synchrotron Emission

• The high kinetic energy electrons that populate the Earth's radiation 
belts emit synchrotron emissions because of their interaction with 
the planetary magnetic field. 

• Emission provides near real time measure of how the radiation belts 
are globally responding to the current solar input

• E in Mega electron-volts (MeV) and pitch angle ɑ, planetary magnetic 
field B Gauss



Jovian Synchrotron Emission

• 100s of MHz
• Magnetic moment 

of Jupiter is 1.59 · 
1030 G/cm3

• ≥1-MeV electrons 
of 108 electrons 
per cm2/s

• Peaks at 9.5 Jovian 
radii, energies 
above 1,000 MeV

D. Santos-Costa, S.J. Bolton / Planetary and Space Science 56 (2008) 326–345



Earth’s Synchrotron Emission

• 100s of kHz
• Magnetic moment of 

Earth's is 2.10 · 1025 
G/cm3 

• Earth has a peak flux of 
≥1-MeV electrons of 107 
electrons per cm2/s

• Peak energies in Earth's 
magnetosphere at 6 
Earth radii below 10 
MeV



State of the Art Understanding & Measurements

• Salammbô code models solves the three-dimensional phase-space 
diffusion equation of electrons in magnetosphere

• Models Coulomb collisions with neutral and plasma populations 
• Wave-particle interactions, 
• Radial diffusion 
• Magnetopause shadowing induced dropouts 
• Models L-shells 1-10 Earth radii
• Uses THEMIS-SST electron distribution measurements as boundary condition
• Kalman Filter for Data Assimilation of Kp plasmapause
• Modeled Calm and Storm time as seen from the Moon

Maget, V., et al. “Improved outer boundary conditions for outer radiation belt data 
assimilation using THEMIS-SST data and the salammbo-enkf code” (2015) 



Why go to the Moon?

• Ionospheric Cutoff restricts observation from the ground
• Earth satellites can sample local electron distributions (THEMIS-SST)
• Moon is stable vantage point to spread out large telescope
• Lunar L1 is only ~16% closer, large satellite clusters still difficult
• Gets a global picture across 500-1000 kHz, infers global electron 

distribution
• Earth is 1.9 degrees from the Moon,

matching possible resolution
• Potential in situ resource utilization

(ISRU) reduces launch mass



Salammbô Calm Period vs Stormy Period



Noise Sources/Additional Science Targets: Transients

 Primary Synchrotron    
Science Band 
0.5 – 1.0 MHz

Marginal Science Band
1.0-1.5 MHz

Avoids most transients



Noise Sources/Additional Science Targets: Transients
Transient Source Frequency 

Range
Lunar 1 MHz Flux 
Density

Occurrence Rate 10 km Overresolution

Auroral Kilometric 
Radiation

50-800 kHz 1010 Jy 50% of night 0.2-0.4 deg at 500 kHz, 
10x better

Earth Continuum 
Emission

30-200 kHz 105 Jy 60% total, highest near 
midnight

N/A, low frequency

Medium Frequency 
Bursts

1.5-4.3 MHz 106 Jy every 6-20 hours
Kp correlation
Beamed

0.7 deg at 3 MHz

Auroral Hiss Continuous
0-30 kHz
Impulsive
100-600 kHz

6.1*108 Jy MF correlation 0.3 deg at 500 kHz

Auroral Roar 2.8-3.0 MHz 106 Jy 1 every 3-5 hours
Kp correlation

0.7 deg at 3 MHz

Solar Radio Bursts 100s kHz – 
100s MHz

106 Jy - 108 Jy Solar cycle dependent N/A bursts scatter over 
time



Noise Sources/Additional Science Targets: Constants
Unavoidable 
Noise

Lunar 1 MHz 
Flux Density

Notes

Galactic 
Brightness

5*106 Jy Acts like correlated 
noise

Amplifier Noise 107 Jy Comparable to Wind 
& SunRISE

Electron QTN
Optimal

3*105 Jy ne = 8/cm3
  

Electron QTN
Moderate

107 Jy ne = 250/cm3
  

Electron QTN 
Conservative

6*107 Jy ne = 1000/cm3
  



Constant Noise Budgets

Average noise taken over 500-1000kHz

Average = 1.1e-20 W = 1.1e6 Jy
8/cc electron density, solar wind

Average = 3.66e-20 W = 3.66e6 Jy
250/cc electron density, moderate 

Average = 1.16e-19 W = 1.16e7 Jy
1000/cc electron density, conservative



• Dominant 750 kHz background 
sources:

• Galactic Emission
• Amplifier Noise
• Quasi-thermal Electron Noise

• QTN driven by electron density, can 
change over lunar day

• Photoionization of lunar dust
• Highest at lunar noon

Signal to Noise Calculation

Taken from SunRISE CSR



Creating Lunar Arrays
• LRO Laser Altimeter Data for Topography
• SPICE for orientation of Lunar coordinates with Sky and Earth
• CASA to handle simulated interferometric data
• Focused on sub-Earth point, but many near side locations would be ok



Creating Lunar Arrays
• Simulate 6, 10, and 20 km diameter arrays
• Best if on region of large crustal thickness to reduce intensity of 

subsurface echoes
• Minimal surface elevation rms preferable



Salammbô Output as Ground Truth

• Most power/information comes from 
• baselines ≤ 30 λ long (12 km) to 10 % max power
• baselines ≤ 6 λ long (2.4 km) to 50 % max power



v

10 km, 4 hours integration 
optimal noise 16K antenna, 
image rms = .041, 5.85 SNR

20 km, 4 hours integration 
optimal noise 16k antenna, 
image rms = .0318, 3.93 SNR

6 km, 4 hour integration, 
optimal noise 16K antenna, 
image rms = .073, 6.44 SNR



Modernized approach

• FarView uses NASA funded technology using in situ resource utilization 
(ISRU) to print ~100K cross dipole antenna from the lunar regolith

• Primary science is from radio quiet zone on the far side, but same 
technology applicable on the near side

• ISRU enables scale needed for sensitive measurements 
• Just finished NIAC Phase II Study
• 21-cm early universe cosmology
• Rovers do most the work, humans could

provide robustness



FarView Architecture



FarView Simulations

~6 km core, ~14 km diameter halo.
80-20 split in core-outriggers (82,944 – 20,160)
Each subarray shares power, 576 dipoles/subarray
Each subarray is 36x16-dipole beamforming units
6444 total beamforming units

Point spread function from FarView’s 179 subarrays 
from the left.  This simulated observation uses a 
snapshot of from instantaneous uv-coverage.  
Achieves sub 1% sidelobes.



Bootstrapping Low Frequency Sky Maps

• Constraining a Model of the Radio Sky below 6 MHz Using the Parker 
Solar Probe/ FIELDS Instrument in Preparation for Upcoming Lunar-
based Experiments

• SunRISE launching soon with 6 CubeSats in this frequency range
• ROLSES-1 of CLPS gave a small sample of data from the Moon
• LuSEE Night coming soon with radio measurements on the lunar 

surface 
• Characterization of galaxy will help more

sensitive observations of other targets
• Like 21-cm early universe cosmology



Plans for pylinex analysis

End Goal: Trained model to separate all instrumental effects and competing signals

Input: Observed 
GSM + Synchrotron Trained pylinex model from many variations of separate data Output: Separated  GSM 

and Synchrotron Signals

+

eg Tauscher et al. 2018 “Global 21 cm Signal Extraction from 
Foreground and Instrumental Effects. I. Pattern Recognition 
Framework for Separation Using Training Sets“ ApJ



Conclusions & Future Work 
• Near side of the Moon provides a unique vantage 

point for observing Earth’s space weather

• For a moderate lunar surface electron density of 
250/cm3, radiation belts might be detectable ~daily

• 10x harder or easier depending on local electron 
noise / Lunar time of day

• Output images allow analysis of global and local 
electron distributions around Earth



Conclusions & Future Work 
• Next: Bootstrap Sky Maps with future missions like 

LuSEE Night and SunRISE

• Next: Foreground Modeling of Galaxy over whole 
Field of View

• Next: Study possible effects of mutual coupling on 
array sensitivity

• Next: Modeling Antenna Beam, Systematics, and 
signal combined w/ pylinex
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