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The Lunar Far Side

0
Science for the lunar far side is driven by its
unique combination of two key attributes _20
.. . . —40
o Minimal ionosphere allows access to low radio &
frequencies (< 30 MHz) 2
—-60 2
5
o Minimal radio interference (particularly at mid- _80 £
latitudes) allows both long integrations and <
easier identification of transient phenomena _100 2
o
-120
-140

Bassett et al. (2020)



RFl on Earth
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RFI on Earth

* Recent MWA data appears 100% contaminated by RFI, largely due to satellite constellations

* First generation Starlink had unintentional emission from a faulty power supply (di Vruno et al.
2023, Grigg et al. 2023)

* After fixes for second generation, satellites now appear 32 times brighter! (Bassa et al. 2024)

* There may not be any useable new data for 21 cm cosmology unless we can excise these
sources in post-processing



Exoplanetary
magnetospheres

IMPACT AND LIMITATIONS




Credit: Chuck Carter and Caltech/KISS



Exoplanetary magnetospheres

Zarka (2007)
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Detecting exoplanetary signals
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The dark ages 21 cm
signal




* The CMB is the most important source of
information about the cosmology of our
Universe

* Probes the Universe 380,000 years after the
Big Bang

* Small fluctuations in temperature trace the
density perturbations that seed all future
structure

Credit: Planck Collaboration




Why is the CMB so valuable?

Multipole moment, ¢
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Credit: Planck Collaboration

0.07°

2500

The power spectrum of cosmic density
fluctuations is a prediction that follows from
inflation

Can fit power spectrum of CMB anisotropies
with just 6 parameters: (1) baryon density, (2)
dark matter density, (3) age of the universe, (4)
amplitude, (5) spectral index, (6) reionization
optical depth

Processes leading from inflationary spectrum to
CMB spectrum are linear and well-understood

A tremendous amount of information still to be
gleaned from secondary anisotropies and
polarization



Limitations of the CMB: Large Scales

Multipole moment, ¢
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* Measurements of the largest angular scales

5000 | . . .
are fundamentally limited: “cosmic variance”

4000 |
* Lowest multipoles are inconsistent with

standard model at the edge of statistical

significance (~2.50)

* Could be evidence of new physics, but no way
to confirm with CMB alone
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Limitations of the CMB: Small Scales

Aneul | * Small scales in the CMB are exponentially
90° 180 10 Cooe o 01° 0070 0.05° damped due to photon diffusion (Silk

§ Planek damping)
4 ACT

+ SPT * Small scales of the density power spectrum
' can constrain running of the spectral index,
curvature, neutrino masses, dark matter
(among others!)

104 |

103}

* Damping effect is specific to photons and,
hence, the CMB — need other probes of
cosmic structure to see what is happening at
very small scales

10}

> 10 30 1000 2000 3000 4000

Multipole moment ¢
Credit: Planck Collaboration



Limitations of the CMB: Total # of Modes

* Fundamentally, the CMB is a surface: can
only fit in a specific number of modes
(especially given lack of small scale
information)

* Limits significance of key cosmological
observables like non-Gaussianity

* To get more modes: measure a volume!

Credit: Planck Collaboration




The Dark Ages

Big Bang

Universe Age

Now
- -1338 billion years
Moderpi/Galaxies
///D
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. Reionization””

3 Black Holes égd Cereti
4 2250 millioryears
First Stars" -
* < 180million years
Cosmic Dark Ages=""

<. 380,000years

Period of cosmic history between the
formation of the CMB and the formation of
the first stars

Universe consists of dark matter, hydrogen &
helium with slowly growing density
perturbations

No sources of electromagnetic radiation
(other than already present CMB photons),
except...




21 cM HYPERFINE SIGNAL FROM HYDROGEN

* The most abundant element in the universe
> 75% of all baryons by mass

* Hyperfine splitting energy differential of 5.9 x 10° eV
°v=1420 MHz

°oA=21cm

> T=0.068 K> CMB is hot enough such that there are
always atoms in the excited state

* Spectral line: observed redshift maps to cosmological
distance
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21 cm Dark Ages Observations
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Structure formation still in linear regime: straightforward to
interpret without messy galaxy physics
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Loeb & Zaldarriaga (2004)
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The Dark Ages vs. EoR

* The Epoch of Reionization (EoR) can also be
studied through its 21 cm signal

* Probes epoch of first stars and galaxies — a bridge
between fundamental physics and astrophysics

* Signals come from a later period of cosmic
history and hence are redshifted less

* Meter wavelength emission can (in principle) be
i detected through the Earth’s ionosphere

Viodégpnaxies * Experiments are ground based

>

e e  The EoR is interesting and exciting but probes
s s _ inherently different physics

~___380,000edrs

Ohirverse Age s ! * Only the dark ages signal provides a clean probe
e of fundamental physics

Big Bang




Can we detect the signal? -

* Dark ages signal is fainter and noise is higher
compared with EoR signal targeted by ground-
based experiments

* Use interferometry to gain access to wide
range of scales

o Cosmological signal is strongest on large spatial
scales (access with dense core)

> Foregrounds need to be modeled with high
precision (use outrigger antennas for high
resolution)

* A close packed 2.5 km? array core has the
sensitivity to achieve a > 100 detection of the z
= 30 21 cm signal with 5 years of operation
(50% duty cycle)
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Can we detect the signal?

10°
—— Power Spectrum z=30 ;
- Fiducial Array 10 o

* Necessitates foreground subtraction that o

has not been required for ground-based
experiments!

* Cosmological forecasting necessary to
determine scientific impact of this scale of 1073
measurement

BT 7
k [h/Mpc]

Smith & Pober (2025)



Lunar far side requirements

* Redshift 30 corresponds to ~45 MHz; redshift 50 corresponds to ~30 MHz
> lonospheric opacity may not be a fundamental obstacle to observations at these frequencies

> lonospheric refraction massively complicates foreground removal and is almost certainly a practical
impediment to collecting the ~20,000 hours of data required

* Allowable levels of residual (i.e. missed) RFI for Epoch of Reionization experiments are very
stringent: < 1 mly per 1000 hours (Wilensky et al. 2020)

o Dark ages signals are fainter, tolerances will be even stricter
> RFI excision techniques could still be effective, but generally need RFI to be detectable in the raw data



Receiver

ANTENNA ELEMENT

Dipole Antenna

ELEMENT

FarView

Power Cables |

CONNECT TO SOLAR ARRAY 1

100,000 antenna array on
the lunar far side

Dipole antennas, power
lines, and solar cell power
systems manufactured in
situ out of lunar regolith

Polidan et al. 2024




Conclusions

* Exoplanetary magnetospheres require observations below the cutoff frequency of the Earth’s
ionosphere and exquisite control of polarization systematics (including RFI source)

° Interesting sensitivities should be achievable with ~100 antenna system

* 21 cm dark age power spectra require large collecting areas and long integration times

° Interesting sensitivities should be achievable with ~100,000 antenna system but foregrounds must be
controlled

* Once constructed, arrays can run with minimal intervention but human presence valuable for
initial surveys and infrastructure
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