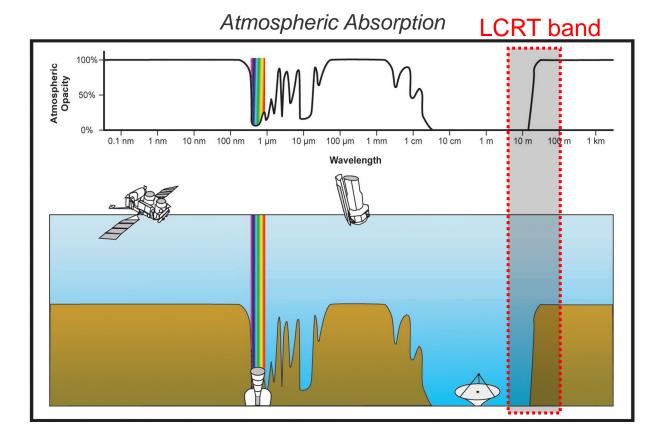
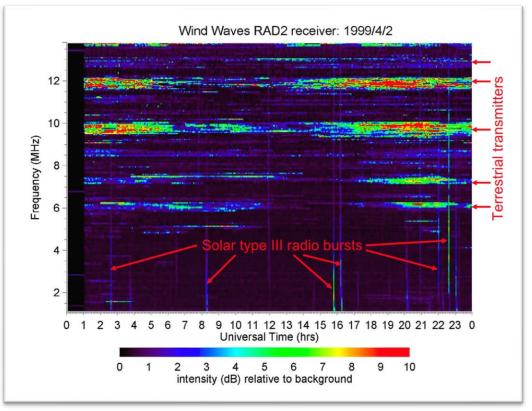
Lunar Crater Radio Telescope (LCRT) on the Far-Side of the Moon



PI. Saptarshi Bandyopadhyay, Jet Propulsion Laboratory, California Institute of Technology Team: A. Goel, M. Arya, N. Chahat, J. Lazio, P. Goldsmith, K. Jenks, R. Wilson, V. Vustyansky, D. Pisanti, G. Gupta, V. Gehlot, P. McGarey, K. Carpenter, S. Moreland, E. Jens, B. Hockman, A. Tang, J. Jewell

Observe our universe in poorly explored 6-64m wavelength band (4.7-47MHz radio frequency)

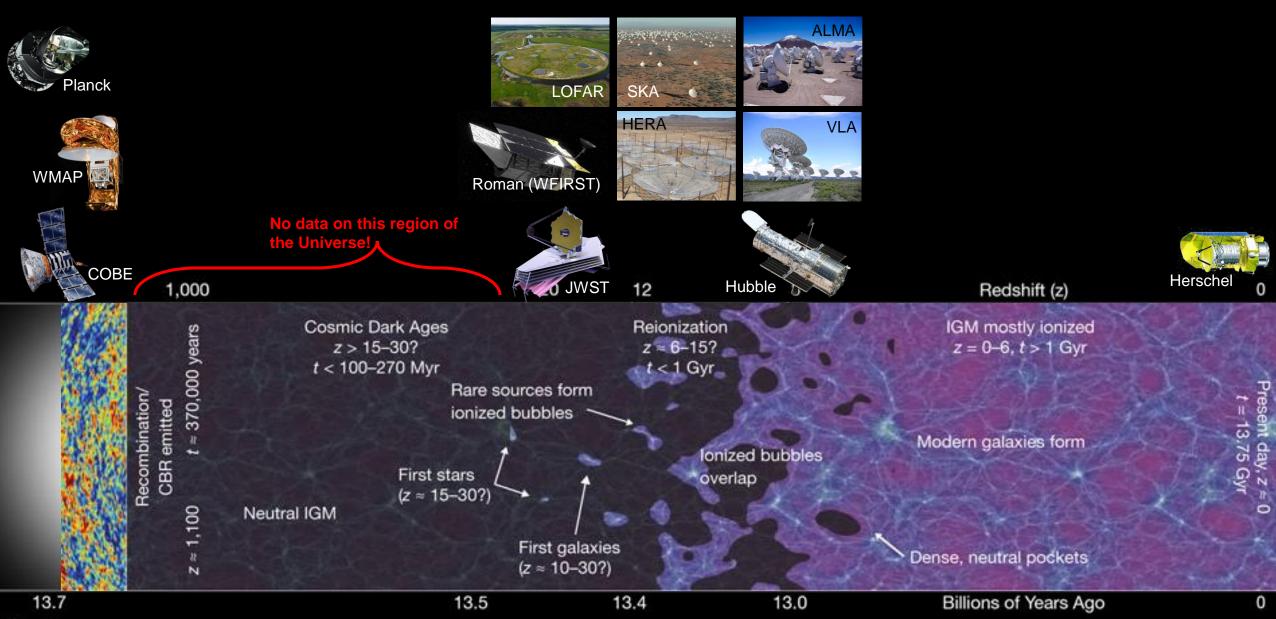
- Observe our universe in poorly explored 6-64m wavelength band (4.7-47MHz radio frequency)
- Moon physically shields LCRT from Earth's noise



Challenging Noise Sources:

- **X** Earth
- **Sun**
- X Galactic foreground

[1] Bassett et. al. "Characterizing the Radio Quiet Region Behind the Lunar Farside for Low Radio Frequency Experiments" Advances in Space Research, 2020



- Observe our universe in poorly explored 6-64m wavelength band (4.7-47MHz radio frequency)
- Moon physically shields LCRT from Earth's noise
- COLCRT (350m diameter) will be one of the largest filled-aperture telescopes in the Solar System!

Evolution of the Universe

Nobel Prizes in Cosmology

A. Penzias, R. Wilson (1978) "Discovery of CMBR"

S. Perlmutter, B. Schmidt, A. Riess (2011)
"Discovery of the accelerating expansion
of the Universe through observations of
distant supernovae."

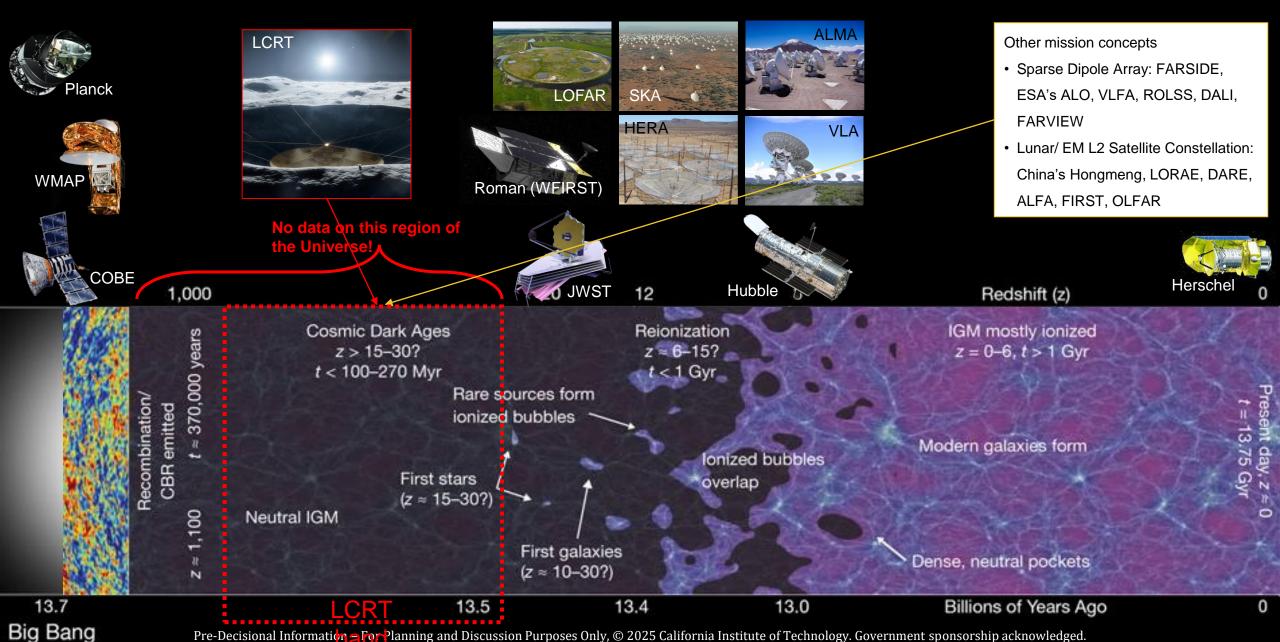
James Peebles (2019) "Theoretical discoveries in physical cosmology"

No data on this region of the Universe!

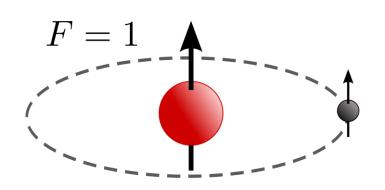
J. Mather, G. Smoot, (2006)
"Discovery of anisotropy000CMBR"

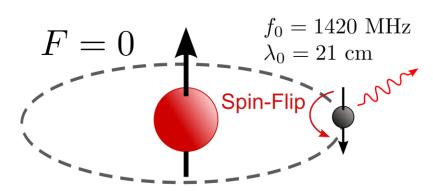
20 12 8 Redshift (z)

Cosmic Dark Ages z > 15-30? z < 6-15? z < 6-15? z < 6-15? z = 0-6, t > 1 Gyr

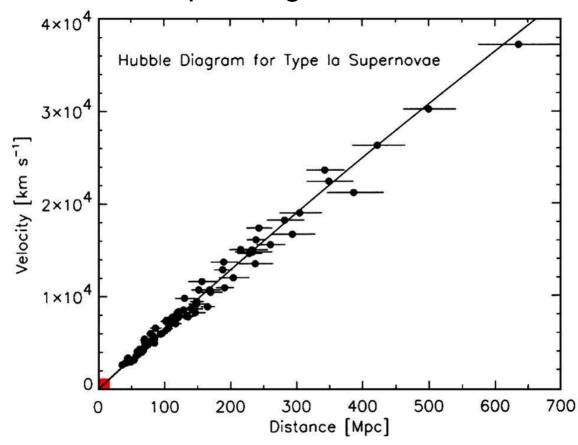

Becomping the composition of th

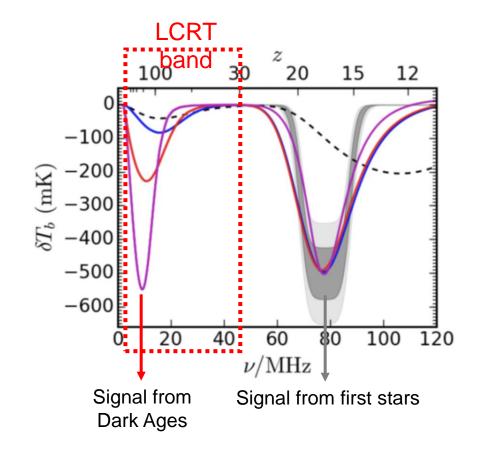
Ionized bubbles overlap Modern galaxies form


Dense, neutral pockets


13.7 13.5 13.4 13.0 Billions of Years Ago

Evolution of the Universe


Neutral Hydrogen Hyperfine
Transition

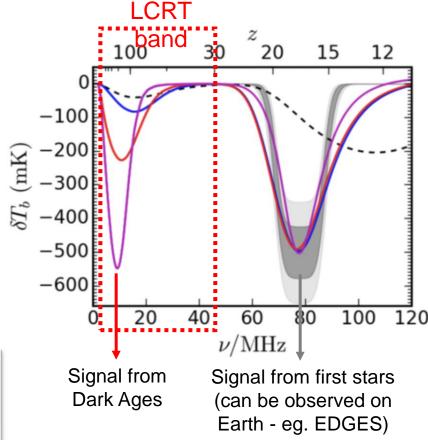

Cosmological Redshift due to

Expanding Universe

Observe the global absorption spectrum of the highly redshifted ($z \approx 30-300$) hyperfine transition of neutral hydrogen ($\lambda = 21 \text{cm}$, $\nu = 1420 \text{MHz}$)

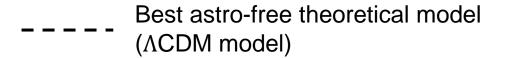
____ Best astro-free theoretical model (ΛCDM model)

^[1] S. R. Furlanetto et. al., "Astro 2020 Science White Paper: Fundamental Cosmology in the Dark Ages with 21-cm Line Fluctuations" [2] Mirocha, Jordan, and Steven R. Furlanetto. "What does the first highly redshifted 21-cm detection tell us about early galaxies?." Monthly Notices of the Royal Astronomical Society, 2019.


Observe the global absorption spectrum of the highly redshifted ($z \approx 30-300$) hyperfine transition of neutral hydrogen ($\lambda = 21 \text{cm}$, $\nu = 1420 \text{MHz}$)

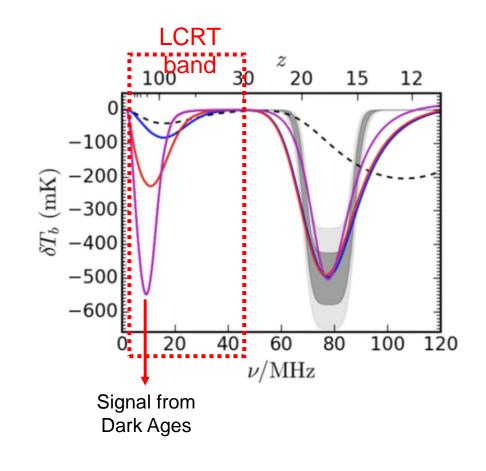
____ Best astro-free theoretical model (ΛCDM model)

EDGES (Experiment to Detect the Global EoR Signature) measurements

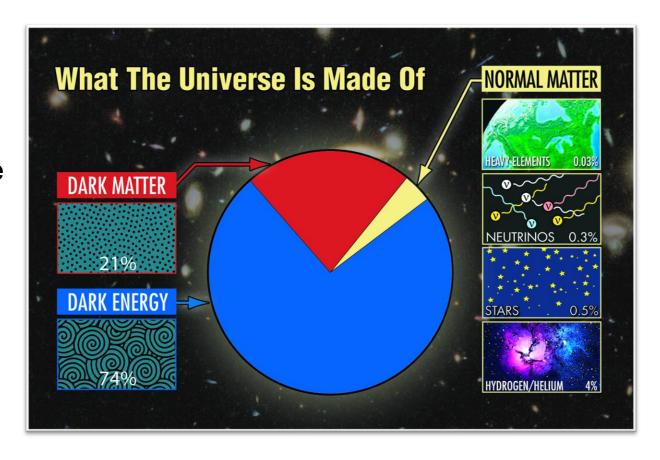


ges with 21-cm Line Fluctuations '' n tell us about early galaxies?.''

echnology. Government sponsorship acknowledged.


[1] S. R. Furlanetto et. al., ", [2] Mirocha, Jordan, and S Monthly Notices of the Roy

Observe the global absorption spectrum of the highly redshifted ($z \approx 30-300$) hyperfine transition of neutral hydrogen ($\lambda = 21 \text{cm}$, $\nu = 1420 \text{MHz}$)


^[1] S. R. Furlanetto et. al., "Astro 2020 Science White Paper: Fundamental Cosmology in the Dark Ages with 21-cm Line Fluctuations" [2] Mirocha, Jordan, and Steven R. Furlanetto. "What does the first highly redshifted 21-cm detection tell us about early galaxies?." Monthly Notices of the Royal Astronomical Society, 2019.

Why is this Important?

Understand dark matter physics

2020 Astrophysics Decadal Survey:

"The panel sees 21 cm and molecular line intensity mapping of the Dark Ages and reionization era as both the discovery area for the next decade and as the likely future technique for measuring the initial conditions of the universe in the decades to follow."

^[1] National Academies of Sciences, Engineering, and Medicine. Pathways to Discovery in Astronomy and Astrophysics for the 2020s. 2023. [2] McDonald Observatory, University of Texas at Austin, https://mcdonaldobservatory.org

2020 Astrophysics Decadal

C. Report of the

Panel on

Cosmology (pg 247-

-263)

LCRT's Science

Goals

[1] National Academies of Sciences, Engineering, and Medicine. Pathways to Discovery in Astronomy and Astrophysics for the 2020s. 2023.

Pre-Decisional Information – For Planning and Discussion Purposes Only, © 2025 California Institute of Technology. Government sponsorship acknowledged.

	BOX C.1	
Summary	of Science	Questions

C-Q1: What set the Hot Big Bang in motion?

C-Q1a: Primordial gravitational waves

C-Q1b: Non-Gaussianity of the large-scale structure of

the universe

C-Q1c: The initial power spectrum of density

fluctuations

C-Q2: What are the properties of dark matter and the dark sector?

C-Q2a: Dark sector signatures in small-scale structure

C-Q2b: Dark sector imprints on Big Bang

nucleosynthesis and recombination

C-Q2c: Annihilation by-products

C-Q3: What physics drives the cosmic expansion and large-scale evolution of the universe?

C-Q3a: The physics of cosmic acceleration

C-Q3b: The properties of neutrinos

C-Q3c: End-to-end tests of cosmology

C-Q4: How will measurements of gravitational waves reshape our cosmological view?

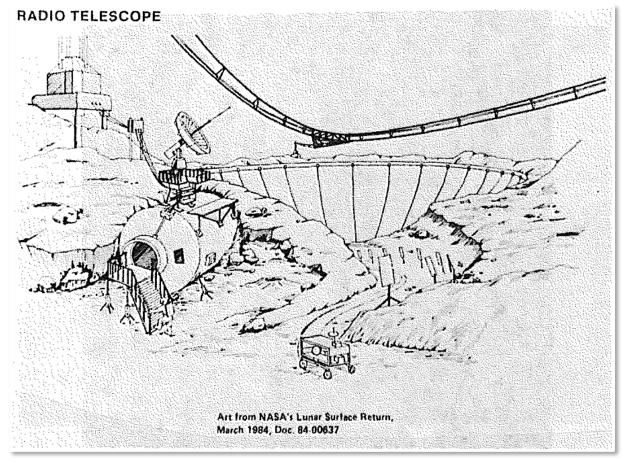
C-Q4a: The stochastic gravitational wave background

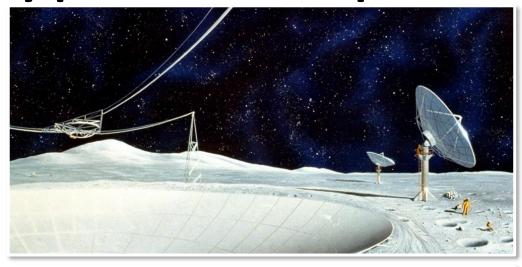
C-Q4b: Standard sirens as a new probe of the cosmic

distance scale

C-Q4c: Light fields and other novel phenomena

Discovery Area: The Dark Ages as a cosmological probe

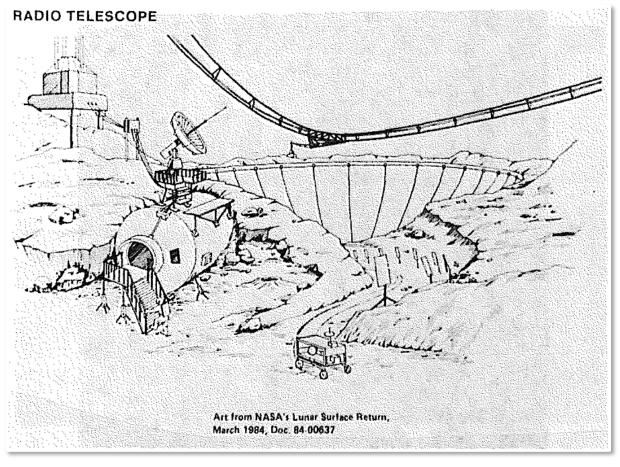

C-DA1: The end of the Dark Ages


C-DA2: The future of primordial density mapping

Science Traceability Matrix

Science Goals from	Science	Scientific Measurement	$Instrument \qquad Performance$	Mission
$2020 \; Astro \; Decadal$	Objectives	Requirements	Requirements	Requirements
Goal 1: Understand	Objective 1:	Measure the global spec-	Frequency Range:	Location on Moon:
the cooling profile of	Ascertain which	tral profile of the highly-	$4.7-47 \mathrm{\ MHz}$	- Latitude: $20^{\circ} \pm 20^{\circ} N$
the Universe during the	cosmological model	redshifted HI transition		- Longitude: $180^{\circ} \pm 45^{\circ}$ E,
Cosmic Dark Ages and	(cold dark matter,	(21cm, 1420MHz) with	Detector Requirements:	to avoid Earth's RFI
the role of dark matter	warm dark matter	[Furlanetto et al., 2019]:	- System temperature $< 1000 \text{ K}$	[Bassett et al., 2020]
in the transition from a	etc.) can explain the	(i) Frequency range of 4.7–	- Antenna directivity: $> 35.2 \text{ dBi}$	- Selected Crater: 14.9°N,
gas comprising mostly	cooling behavior of	47 MHz,	at 47 MHz (beamwidth $< 2.0^{\circ}$),	170°E
neutral hydrogen, to the	the Universe during	(ii) Spectral resolution of	> 17.7 dBi at 4.7 MHz	
formation of first stars	the Dark Ages	1 MHz,	$(\text{beamwidth} < 12.0^{\circ})$	Preferred Observa-
and galaxies (Cosmic		(iii) Noise temperature less	- Galactic foreground suppression	tion Time: Lunar night,
Dawn).		than 15 mK,	better than 10^{-8}	to avoid Sun's radio emis-
		- Wavelengths > 10 m	- Parabolic reflector, stationary	sions [Gopalswamy, 2004,
Goal 2: Establish		not observable from Earth	feed	Alibay et al., 2017]
the role of dark energy	Objective 2: To	due to ionospheric ef-	- Focal length to diameter ratio	- Operating temperature
in the early evolution	provide an indepen-	fects [Datta et al., 2016,	$(F/D) \approx 0.5$	range: 90–100 K
and growth in the scale	dent measurement	Shen et al., 2021]		- Survivability temperature
of the Universe.	of the Hubble con-	- HI signal expected to dis-	Reflector Requirements:	range: 90–400 K
	stant and settle the	appear below 4.7 MHz due	- Diameter ≥ 350 m	Data manastian mata
E 2020 A 4	discrepancy in our	to opacity of early Universe	- Resistivity $< 0.5\Omega/\mathrm{m}$	Data generation rate:
From 2020 Astro	current estimates	[Furlanetto et al., 2006]	- Surface RMS error from desired	10 kbit/sec during night
Decadal:	of one of the most		parabolic shape ≤ 0.64 m	time operation
- <i>C-Q2</i> [p.252] - <i>C-Q3a</i> [p.254]	critical and funda-		- Mesh Spacing ≥ 0.04 openings per inch (OPI)	Mission duration
- C - $Q3a$ [p.254] - C - $Q3c$ [p.256]	mental parameters		per men (OF1)	$\approx 1 \text{ year}$
- C-Q3 [p.250] - C-DA1 [p.258]	in Cosmology.		Feed Requirements:	Bandyopadhyay et al., 2021,
- C-DA1 [p.256]			- Polarization measurement with	Rapetti et al., 2020
			cross polarization levels < 20 dB	[100pc001 c0 al., 2020]
			- Spectral resolution: 1 MHz	
			Spectral resolution. 1 Willz	

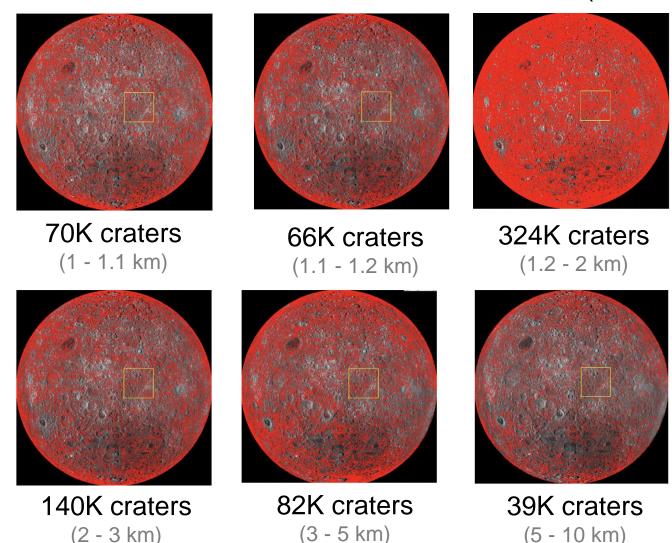
Lunar Arecibo-type Concept



- [1] Burns, J.O., Duric, N., Taylor, G.J., and Johnson, S.W., "Observatories on the Moon," Scientific American, 1990.
- [2] Johnson, S.W., "Engineering for a 21st century lunar observatory," *Journal of Aerospace Engineering*, 1988.

Lunar Arecibo-type Concept

Technical Challenges


- Selection of lunar crater
- Arecibo-type support structures
- Thermal strain compensation
- Rim to floor transportation

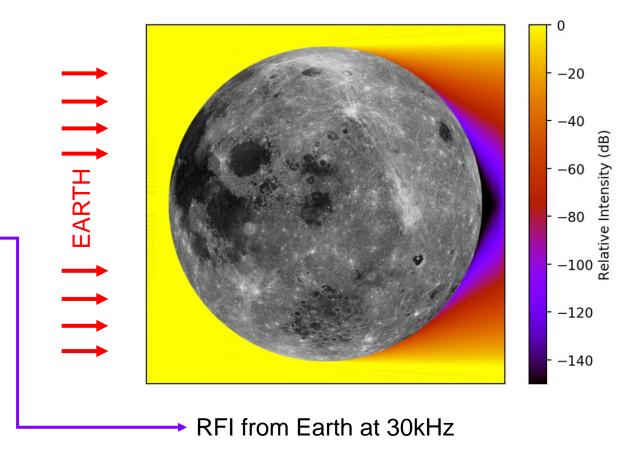
[1] Burns, J.O., Duric, N., Taylor, G.J., and Johnson, S.W., "Observatories on the Moon," Scientific American, 1990.

[2] Johnson, S.W., "Engineering for a 21st century lunar observatory," Journal of Aerospace Engineering, 1988.

Lunar Crater Selection

Lunar Reconnaissance Orbiter Camera (LROC) database

(2 - 3 km)

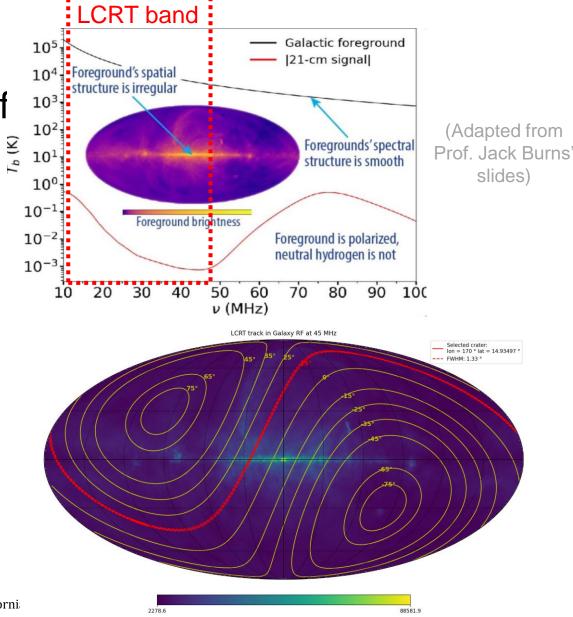

LRO Spacecraft

(5 - 10 km)

Lunar Crater Selection

Crater Requirements

- O Diameter: 1-2 km
- Minimum Depth: 200 m
- Location: 20°N, 180±45°E
- No boulders or outcrops
- Complete crater rim
- Level surface outside crater


[1] Bassett et. al. "Characterizing the Radio Quiet Region Behind the Lunar Farside for Low Radio Frequency Experiments" Advances in Space Research, 2020

Galactic Foreground

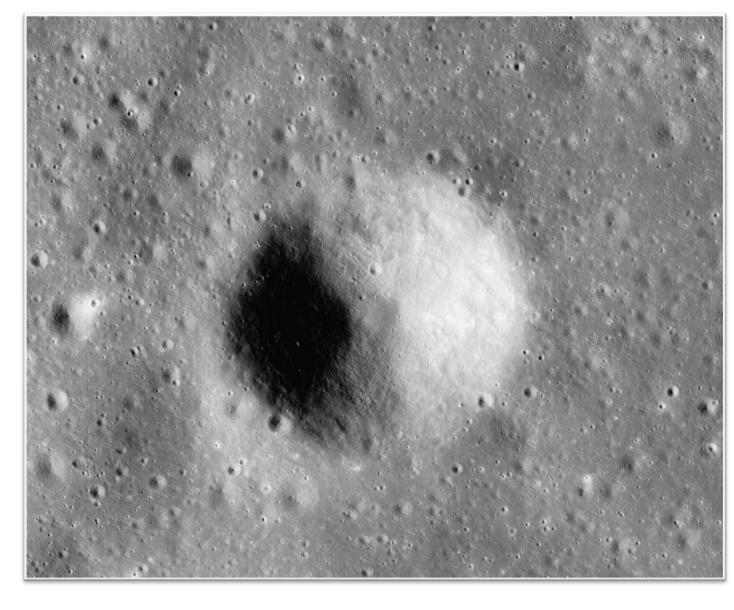
Challenge:

Galactic foreground several orders of magnitude stronger than signal

Variation of galactic signal with lunar latitude

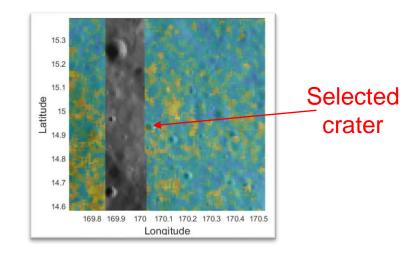
Selected Lunar Crater

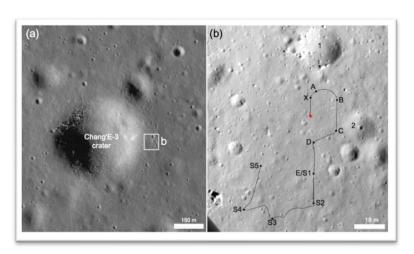
Selected Crater

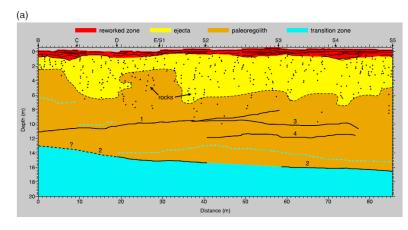

ODiameter: 1.33 km

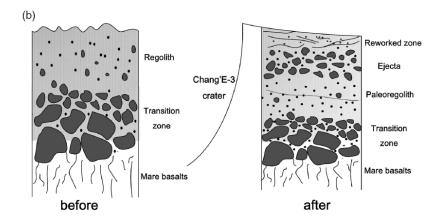
ODepth: 275 m

ODepth to Diameter ratio: 0.21

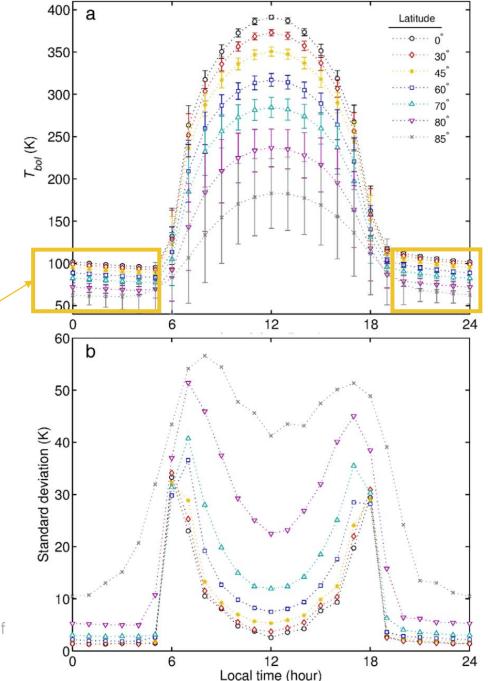

Location: 14.93497°N, 170.05050°E


1m/pixel resolution Digital Elevation Model (DEM)



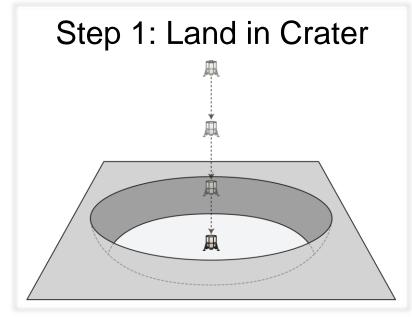

Subsurface Properties

- Circular Polarization Ratio (CPR) from Mini-RF instrument on LRO Spacecraft
- Interpretation from Chang'E 3 Lunar Penetrating Radar data (500 MHz)

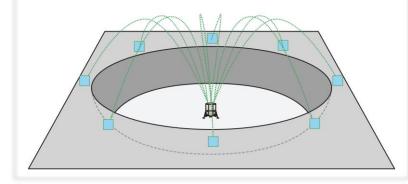


Lon: 44.1E Lat: 340.5N, Diameter: 450m, Depth: 50m

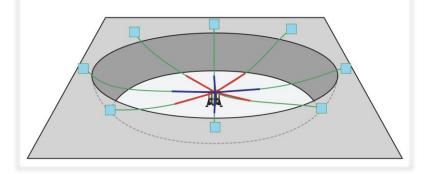
[1] W. Fa et, al., "Regolith stratigraphy at the Chang'E-3 landing site as seen by lunar penetrating radar," Geophysical Research Letters, 2015.

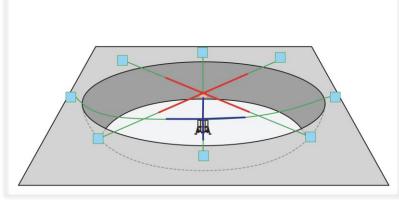

Temperature during Lunar Night

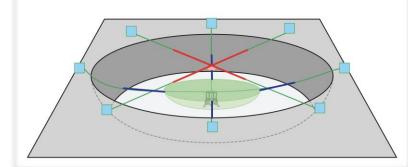
- Lunar Surface Temperatures
- ΔTemp = 10K (during lunar night)

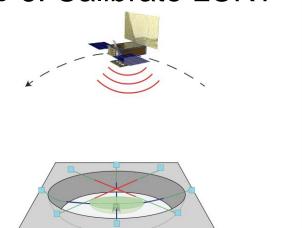


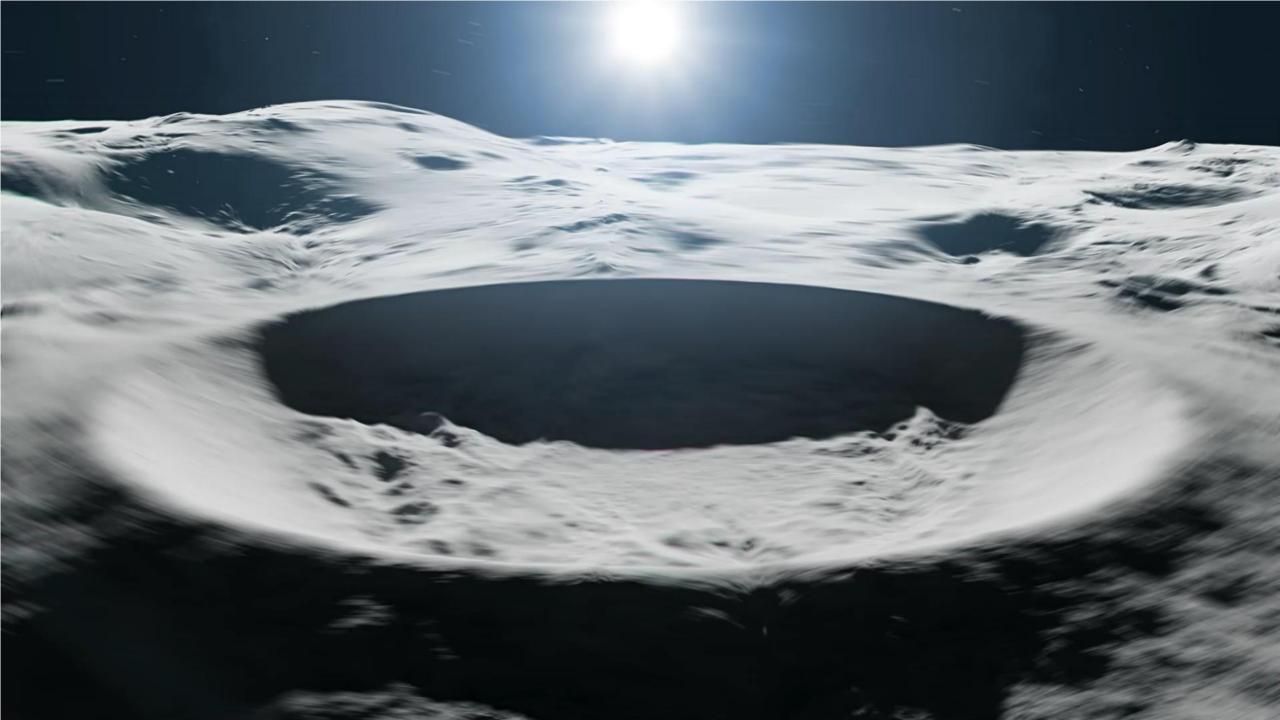
[1] J.-P. Williams, D. Paige, B. Greenhagen, and E. Sefton-Nash, "The global surface temperatures of the moon as measured by the diviner lunar radiometer experiment," Icarus, 2017.


Concept of Operations

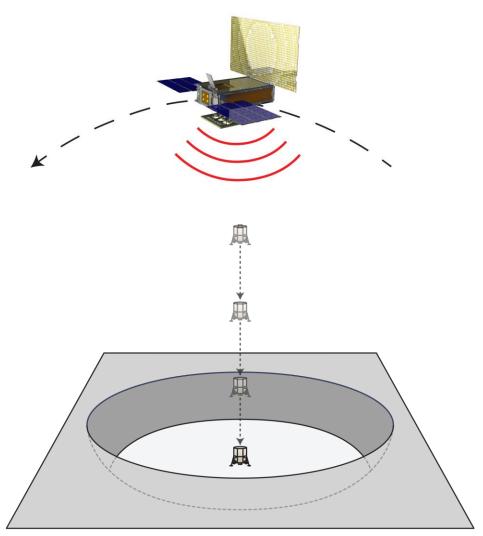

Step 2: Fire Anchors to Crater Rim


Step 3: Tension Lift Wires


Step 4: Deploy Feed

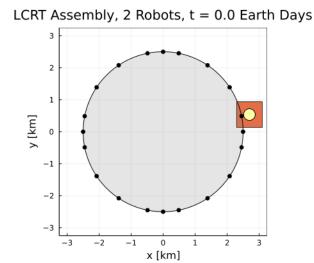


Step 5: Deploy Reflector

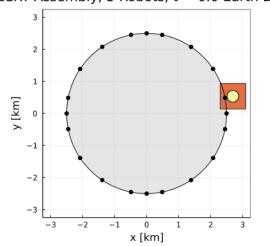


Step 6: Calibrate LCRT

ConOps Step 1: Land in Crater

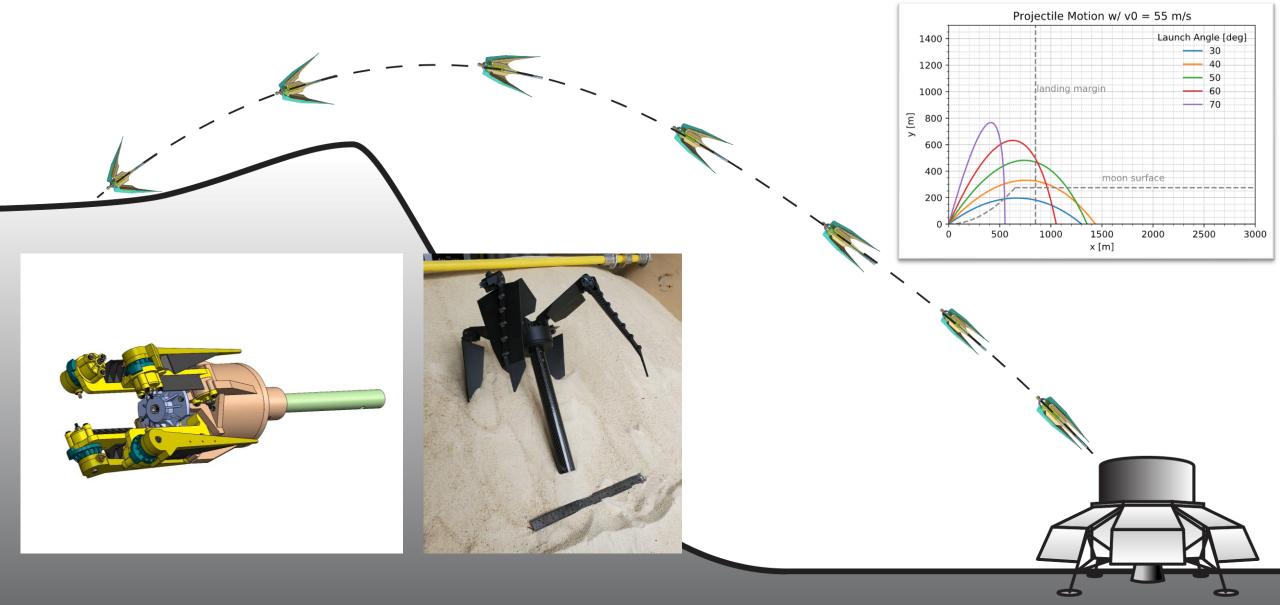


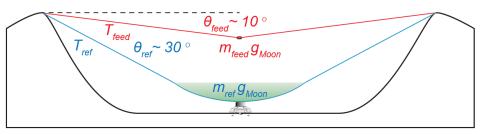
	Current Best Estimate (kg)	Mass Growth Allowance	Predicted Mass (kg)
Payload	745	20%	894
Feed + Reflector	510		
Anchors + Projectile	207		
Beacon Spacecraft X 2	14 X 2		
Spacecraft Bus	473	20%	567
ACS Subsystem	9		
CDS Subsystem	28		
Mechanical Subsystem	220		
Power Subsystem	161		
Telecom Subsystem	30		
Thermal Subsystem	25		
Total Predicted Mass			1461
JPL DP9 Mass Margin			23%
Total Launch Mass			1741


Why Projectile-based Deployment?

Rover-based and projectile-based deployments were studied

- 1.3km dia. crater is within the reach of projectiles
- We need 8 rover to construct LCRT in 1 lunar day, or the rovers need to survive lunar night
- Rovers need lander at crater rim



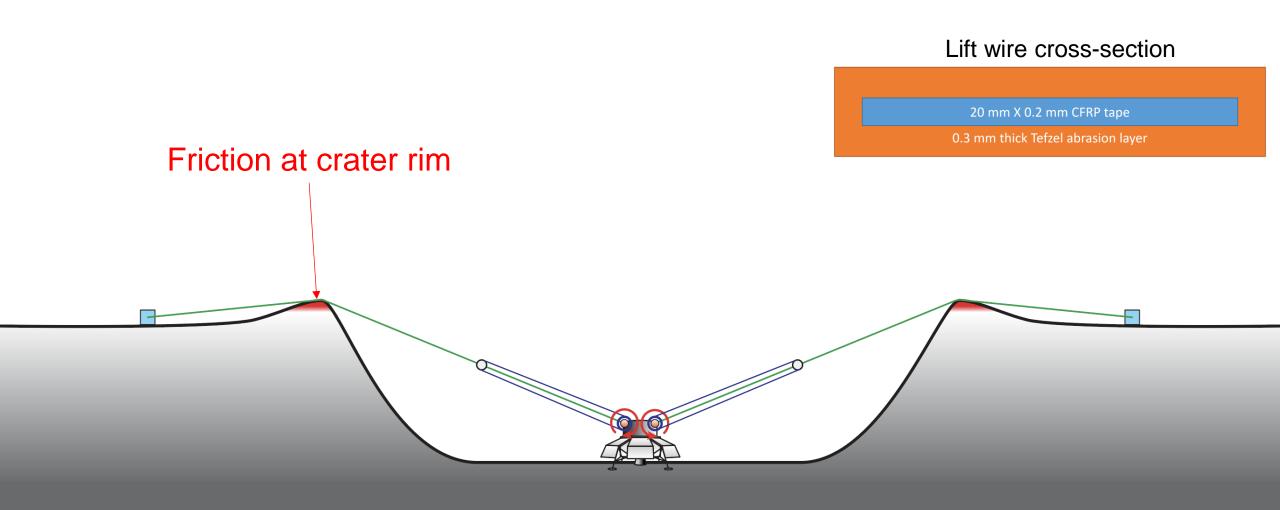


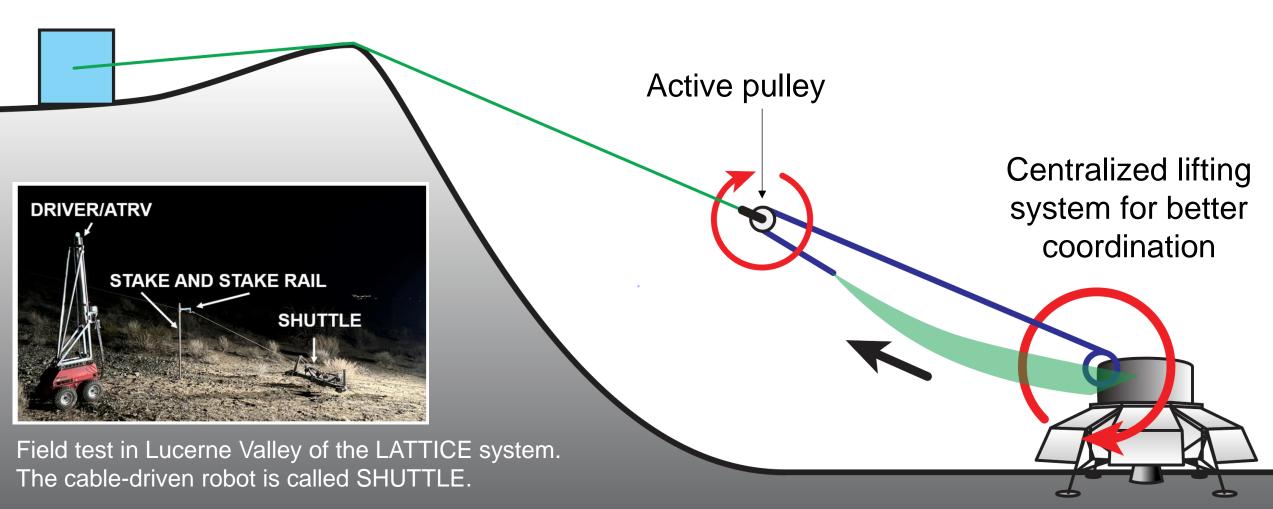
[1] P. Culbertson, A. Goel, P. Mcgarey, M. Schwager, S. Bandyopadhyay, "Multi-Robot Assembly Scheduling for the Lunar Crater Radio Telescope on the Far-Side of the Moon," IEEE Aerospace Conference, Big Sky, MT, Mar. 2022.

ConOps Step 2: Fire Anchors

Testing of Plow Anchors

 $T_{ref} = 321 \text{ N}, T_{feed} = 317 \text{ N}$

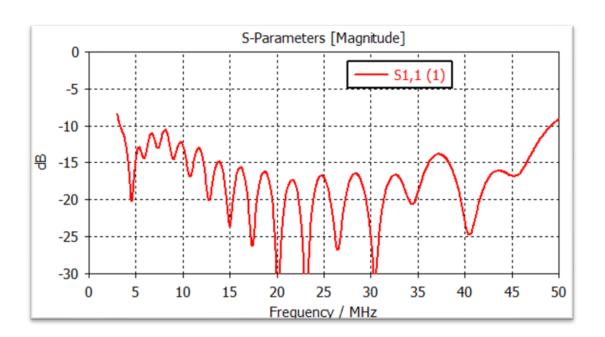


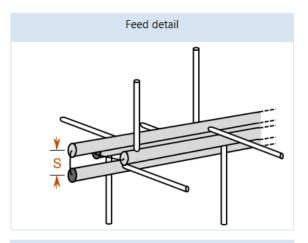

[1] K. Carpenter, S. Bandyopadhyay, H. Stuart, A. Goel, S. Moreland, C. Gebara, E. Jens, B. Hockman, "Launchable Lunar Anchors", Structures and Materials in Extreme Environments, SciTech, Jan 2025.

[2] R. Wang, V. Gehlot, S. Bandyopadhyay, A. Goel, B. Byron, P. McGarey, R. Wilson, K. Jenks, "Lift Wire Deployment and Anchoring System for the Lunar Crater Radio Telescope on the Far Side of the Moon," AIAA SciTech Space Exploration, National Harbor, MD, January 2023.

ConOps Step 3: Tension Lift Wires

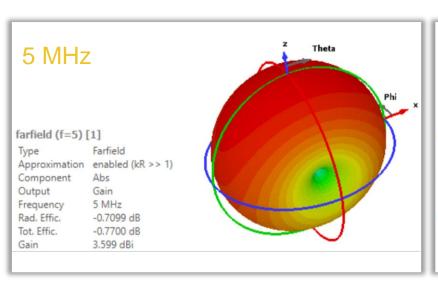
ConOps Step 4: Deploy Feed

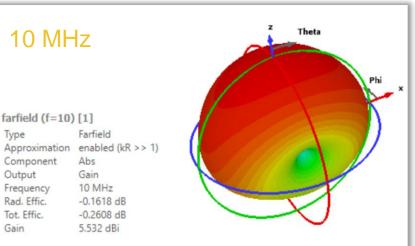


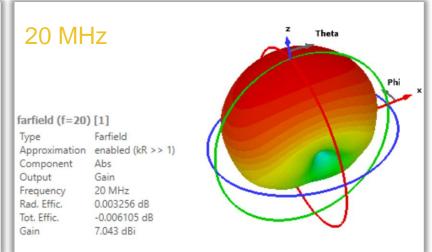

Design of the Feed

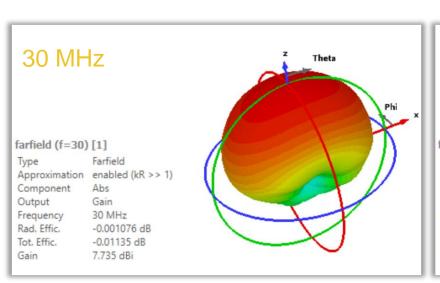
Log Periodic Antenna:

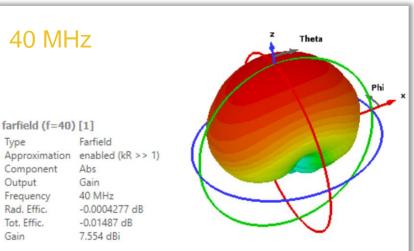
Provides V, H, and C polarization

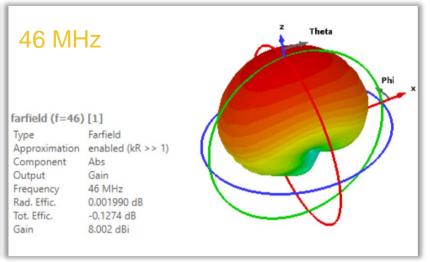

Length = 37.5m

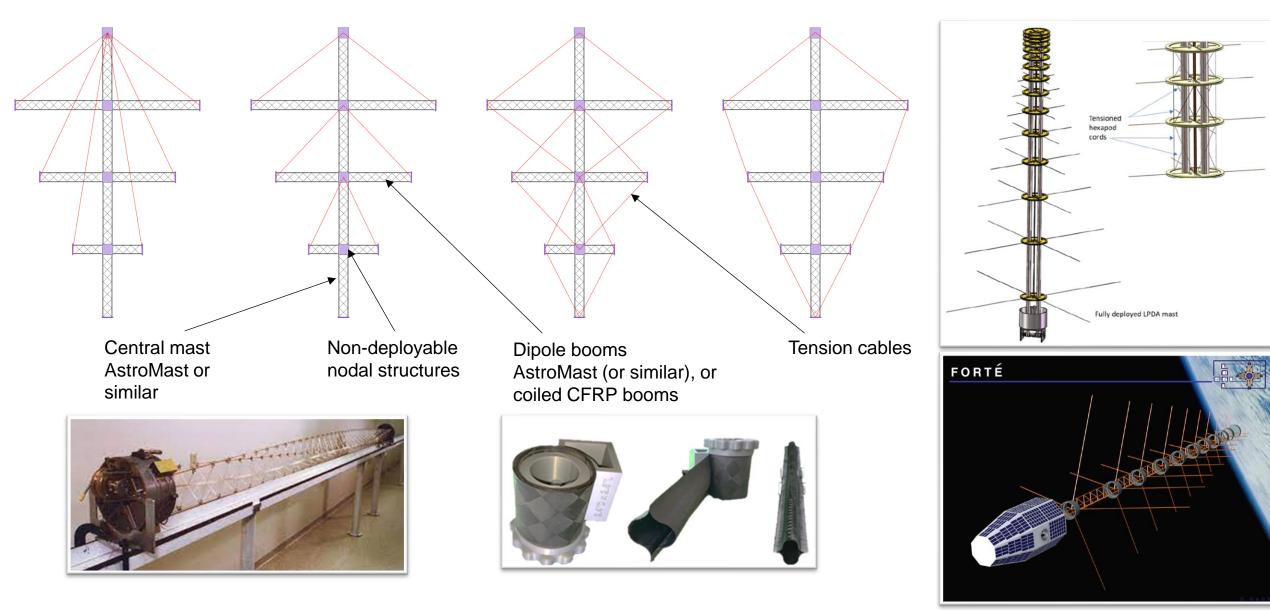


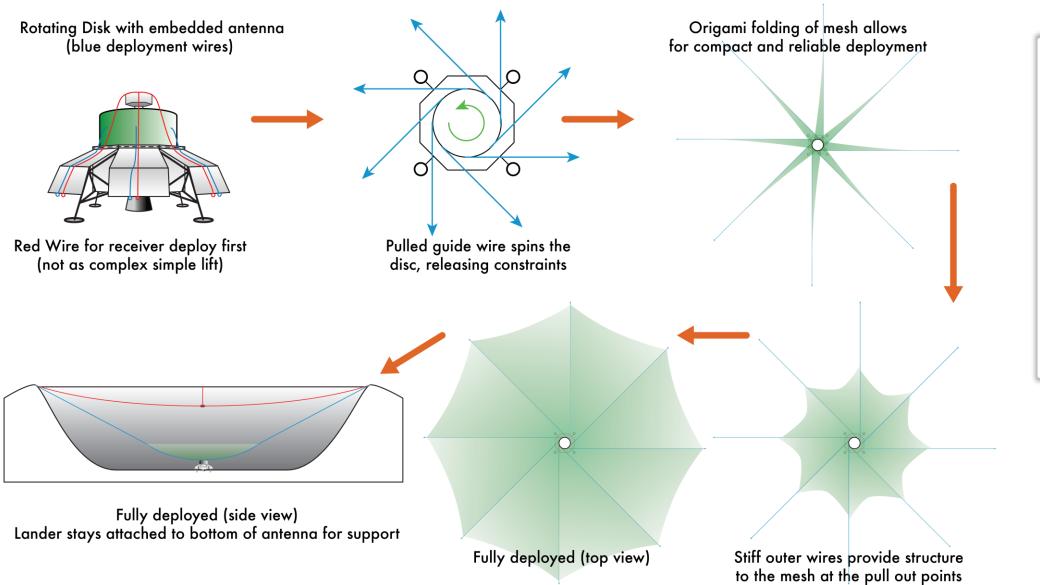





RF Performance of the Feed



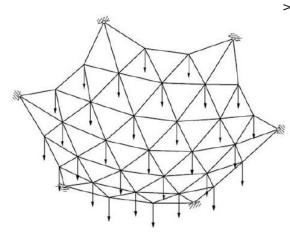


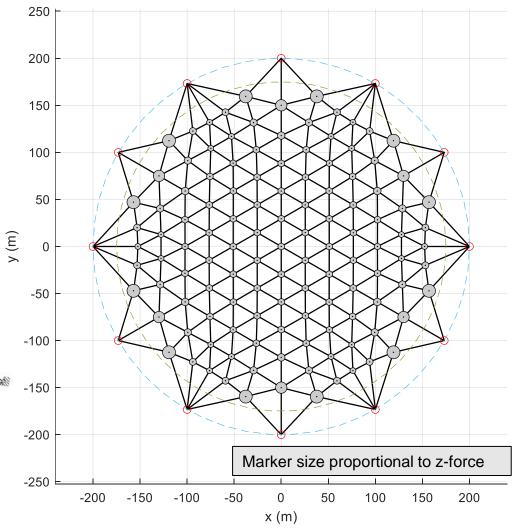


Deployment of the Feed

ConOps Step 5: Deploy Reflector

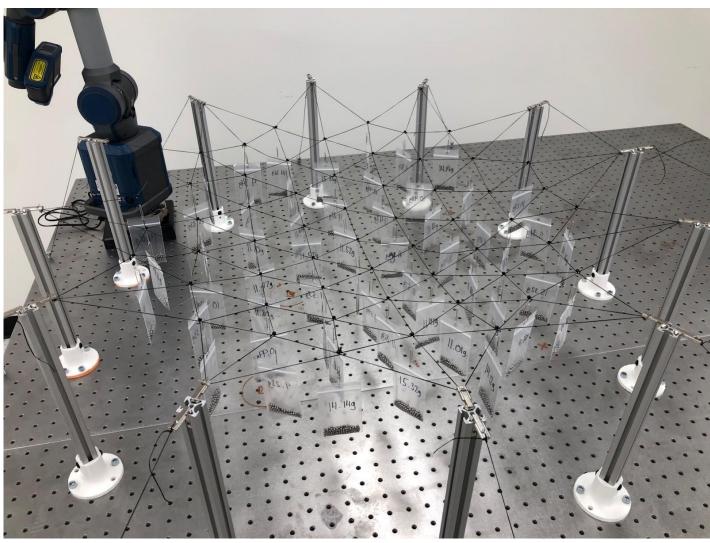
Height of stack depends of number of folds $h = 2\pi r / folds$


Design of the Reflector


Structural network of tensioned cables

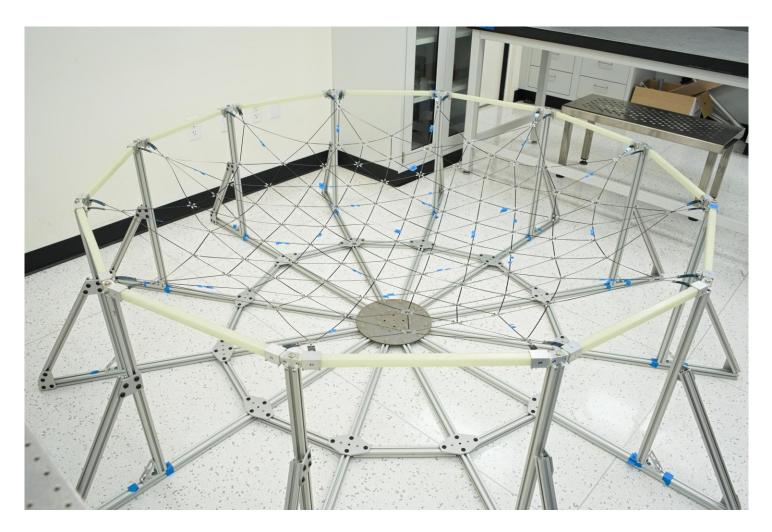
Structural net supports compliant

metallic mesh


^[1] G. Tibert. "Deployable tensegrity structures for space applications". PhD thesis. Dept. of Mechanics, KTH Royal Institute of Technology, 2002.

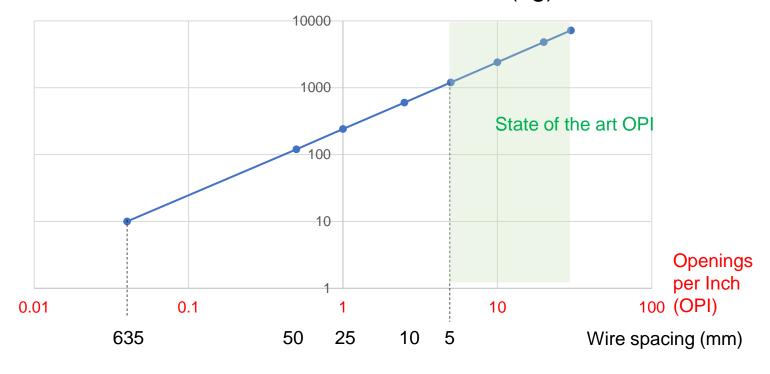
^[2] G. Tibert. "Optimal design of tension truss antennas". 44th AIAA/ ASME/ASCE/ AHS/ ASC Structures, Structural Dynamics, and Materials Conference, 2003.

Subscale Reflector Prototype

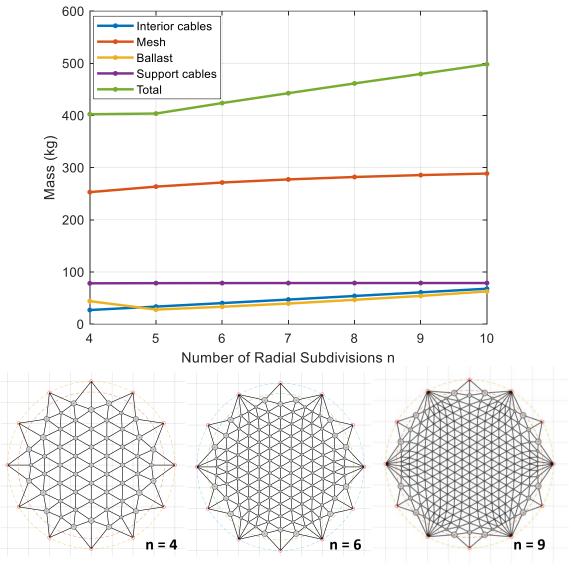

- ~1 m-scale reflector prototype to check:
- Hanging net is stable and stiff
- Hanging shape matches as-designed

Subscale Reflector Prototype

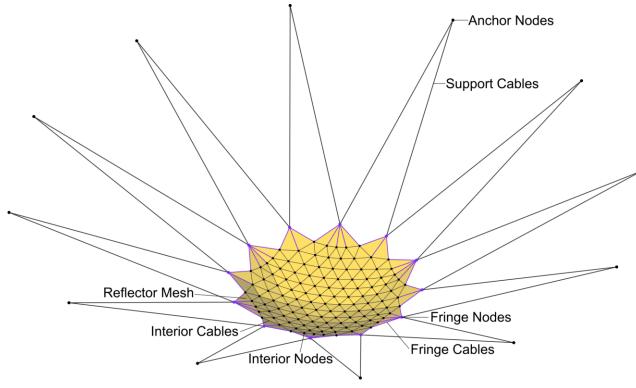
1/200 scale reflector prototype in crater for RF testing:


Pre-Decisional Information – For Planning and Discussion Purposes Only, © 2025 California Institute of Technology. Government sponsorship acknowledged.

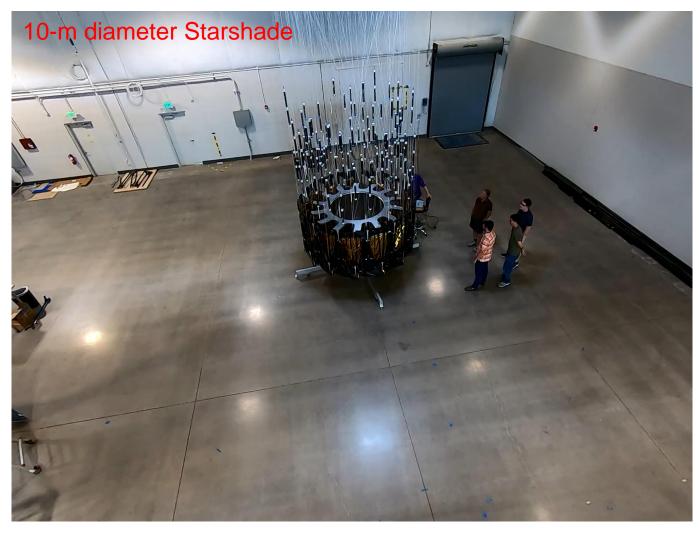
Design of the Reflector Mesh



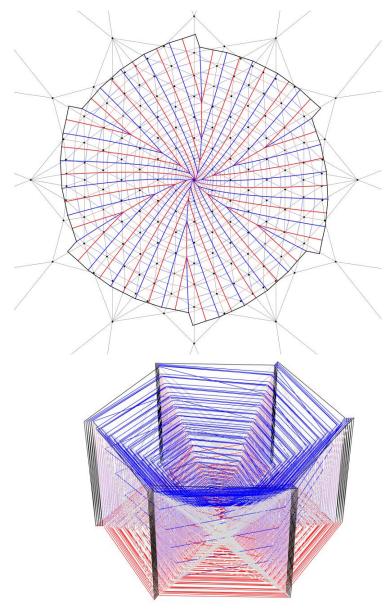
Secant Group's Knit Gold Antenna Mesh


Mesh mass for 350 m diameter (kg)

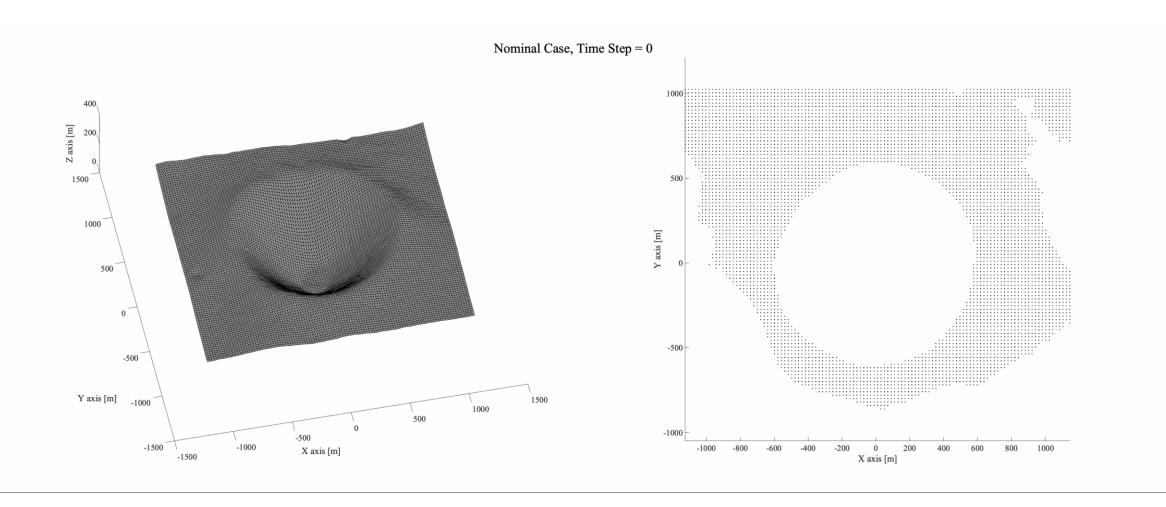
Design of the Reflector

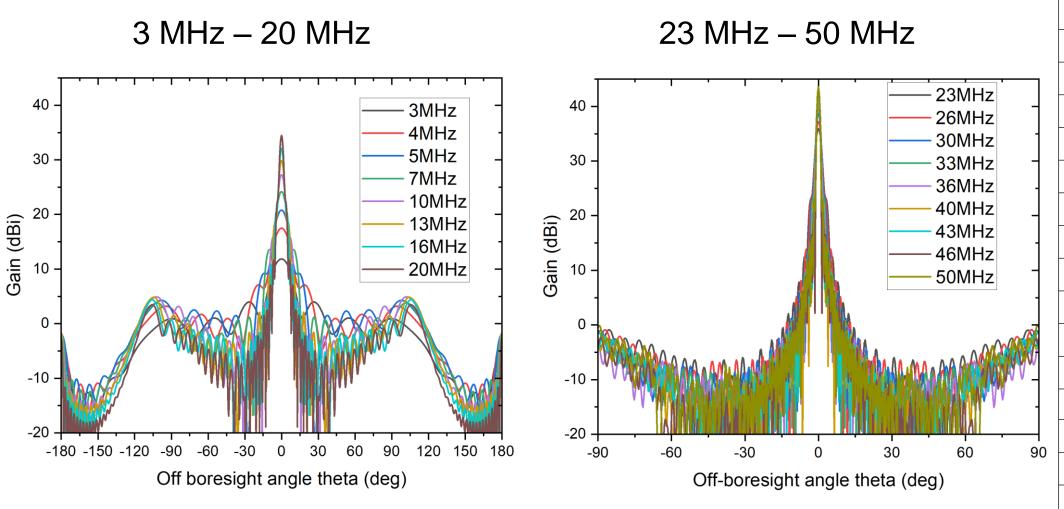


Proposed architecture for support cables

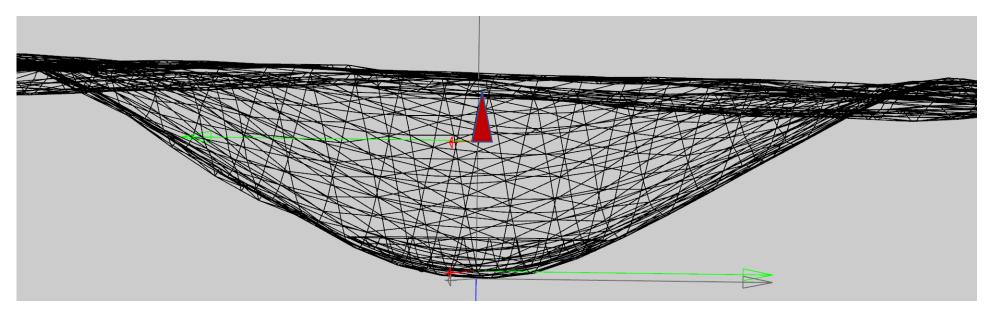


[1] M. Arya, A. Verniani, M. Delapierre, D. Pisanti, G. Gupta, A. Goel, J. Lazio, P. Goldsmith, S. Bandyopadhyay, "Kilometer-Scale Parabolic Reflector for a Radio Telescope in a Lunar Crater," AIAA SciTech Spacecraft Structures, National Harbor, MD, January 2023. [2023 AIAA Spacecraft Structures Best Paper Award]

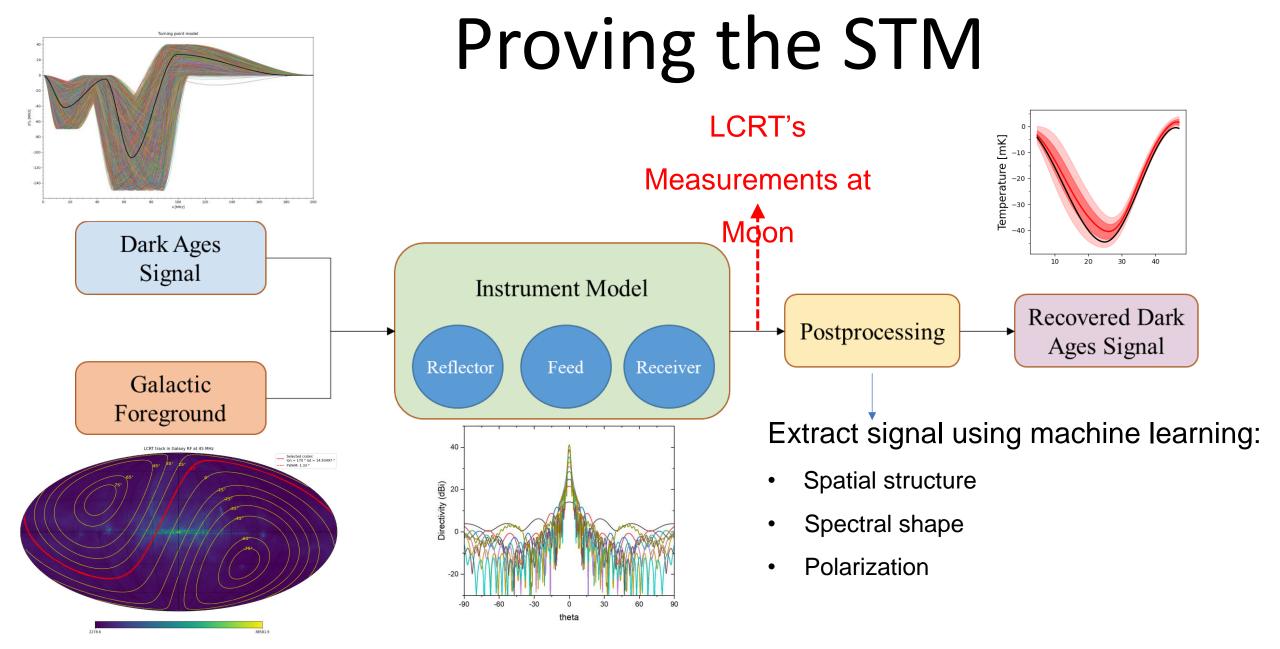

Deployment of the Reflector


[1] Zirbel, Shannon A., Robert J. Lang, Mark W. Thomson, Deborah A. Sigel, Phillip E. Walkemeyer, Brian P. Trease, Spencer P. Magleby, and Larry L. Howell. "Accommodating thickness in origami-based deployable arrays." Journal of Mechanical Design 135, no. 11 (2013).

Error Correction in Deployment

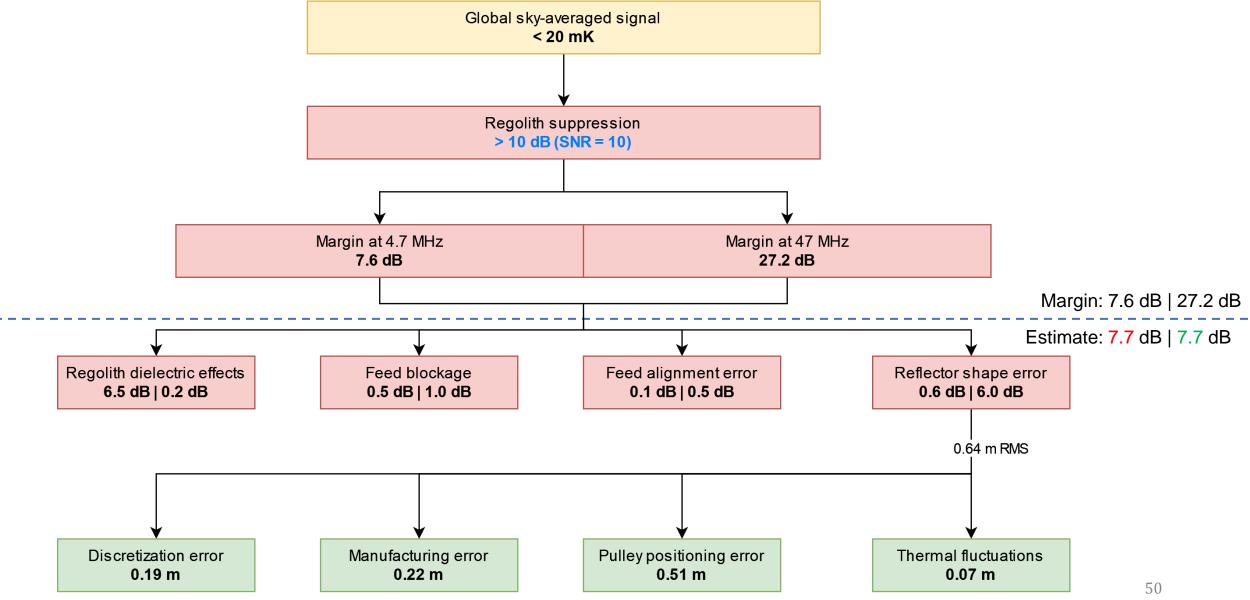


RF Performance of LCRT



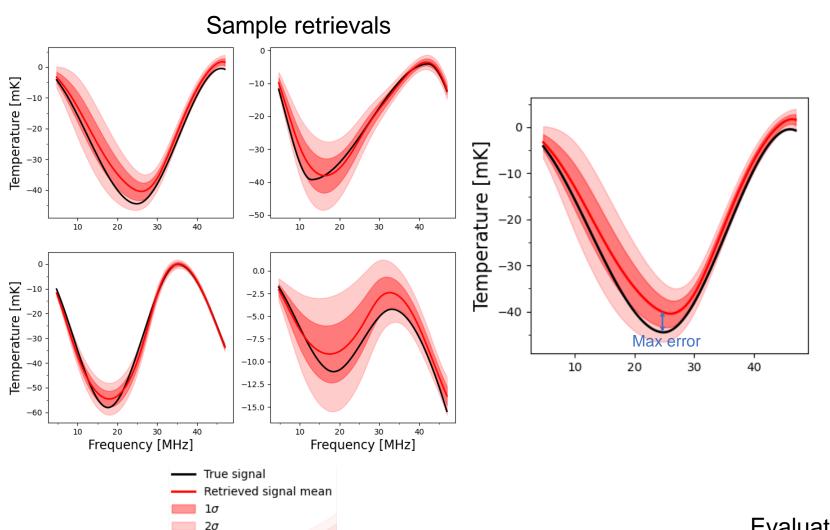
Frequency (MHz)	Maximum Gain (dBi)
3	11.84
4	17.47
5	20.78
7	24.17
10	27.29
13	29.86
16	32.08
20	34.47
23	35.89
26	37.23
30	38.75
33	39.77
36	40.74
40	41.71
43	42.37
46	43.08
50	43.63

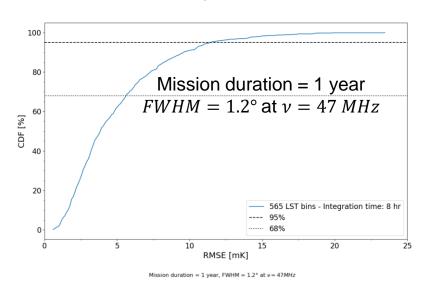
RF Performance with Subsurface

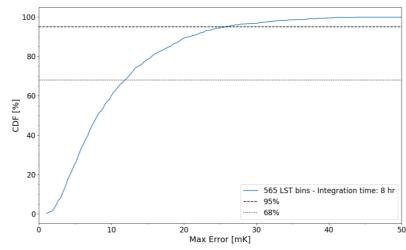


		No cra	ter			Crater present					
Freq	(-60°to 60°)	±(90° to 60°)	total incoming power	Suppression beyond ±60°	(-60° to 60°)	±(90° to -60°)	total incoming power	Suppression beyond ±60°	Contribution of regolith in the signal		
4.7 MHz	5439.191	430.24	5869	-11.02 dB	5874.2	398.57	6272.8	-11.67 dB	0.064		
10 MHz	16282.92	353.74	16636.66	-16.63 dB	16671.1	288.06	16959.16	-17.61 dB	0.019		
30 MHz	68614.36	82.45	68696.81	-29.20 dB	69112.97	63.83	69176.8	-30.34 dB	0.0069		
47 MHz	113498.6	58.154	113556.8	-32.90 dB	113673.6	41.58	113715.2	-34.36 dB	0.0014		

[1] Tauscher, Keith, David Rapetti, Jack O. Burns, and Eric Switzer. "Global 21 cm signal extraction from foreground and instrumental effects. I. pattern recognition framework for separation using training sets." The Astrophysical Journal, 2018.

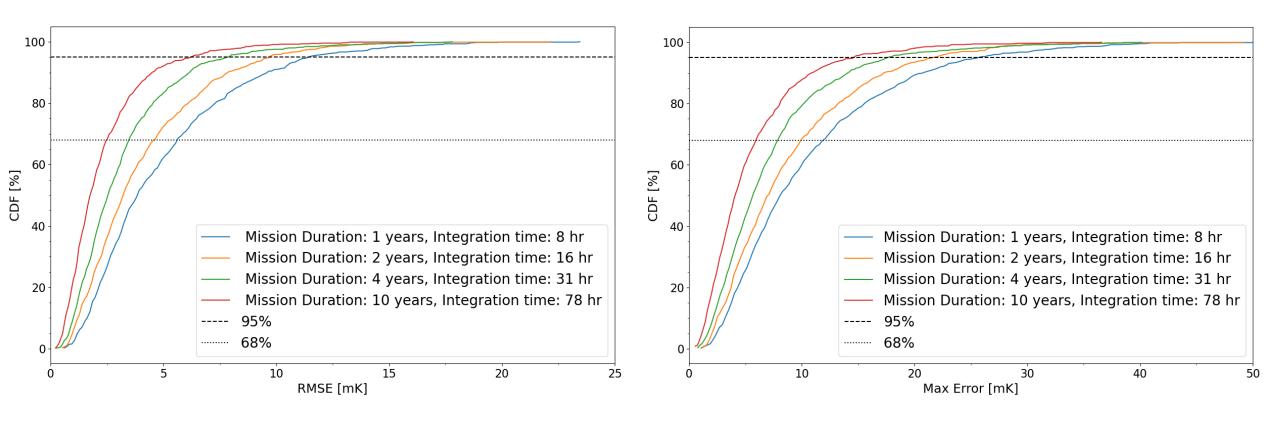

Telescope Error Budget




Preliminary Results

Error Statistics

ission duration = 1 year. FWHM = 1.2° at v = 47MH:



Evaluated using 900 curves from Training Set: 30 Beam-weighhed Foregrounds x 30 Signals

Varying Mission Duration

- $FWHM = 1.2^{\circ}$ at v = 47 MHz
- Increasing mission duration decreases thermal noise
- Tested on 900 curves from Training Set: 30 Beam-weighted Foregrounds x 30 Signals

[1] D. Pisanti, A. Goel, G. Gupta, M. Arya, J. Lazio, P. Goldsmith, S. Bandyopadhyay, "Modeling Science Return from the Lunar Crater Radio Telescope on the Far Side of the Moon," Philosophical Transactions Royal Society A, March 2024.

Summary

- LCRT concept
 - Deploy 350m wire mesh in a suitable lunar crater on the far side
 - Observe the universe in (so far unexplored) 6−64m radio wavelengths
 - Scientific insights into the evolution of the Universe
 - Many technical challenges being addressed

Create a lot of public excitement!

LCRT Team

Saptarshi B. (JPL)

Joseph Lazio (JPL)

Kenneth Jenks (NASA JSC)

Kalind Carpenter (JPL)

Ashish Goel (JPL)

Paul Goldsmith (JPL)

Ron Wilson (Ret. Brig. Gen. USAF)

Scott Moreland (JPL)

Ramin Rafizadeh (JPL)

Marco Quadrelli (JPL)

Vladimir Vustyansky (CG Artist)

Elizabeth Jens (JPL)

Dario Pisanti (JPL)

Adrian Stoica (Ex-JPL)

Gregg Hallinan (Caltech)

Benjamin Hockman (JPL)

Manan Arya (Stanford)

Issa Nesnas (JPL)

Robert Miller (JPL)

Adrian Tang (JPL)

Gaurangi Gupta (JPL)

Nacer Chahat (JPL)

Vinod Gehlot (JPL)

Jeff Jewell (JPL)

Benjamin Byron (UCF)

Rebecca Wang (Stanford)

Patrick McGarey (Blue Origin)

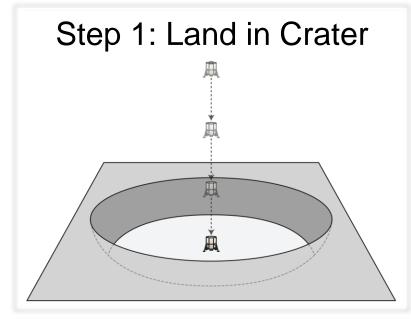
Making LCRT - a Reality...

Thank You!

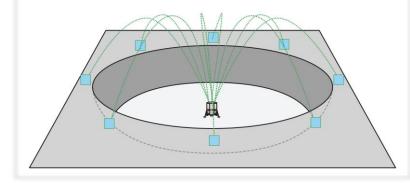
ACKNOWLEDGMENT

This research was carried out at the Jet Propulsion Laboratory,

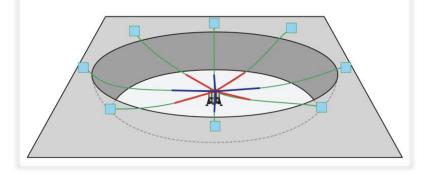
California Institute of Technology, under a contract with the National

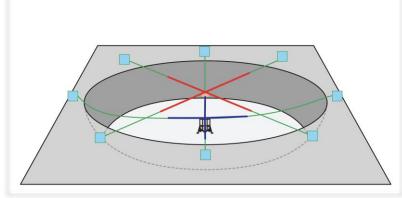

Aeronautics and Space Administration.

© 2025 California Institute of Technology. Government sponsorship acknowledged.

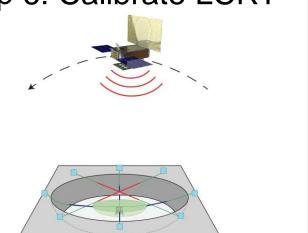


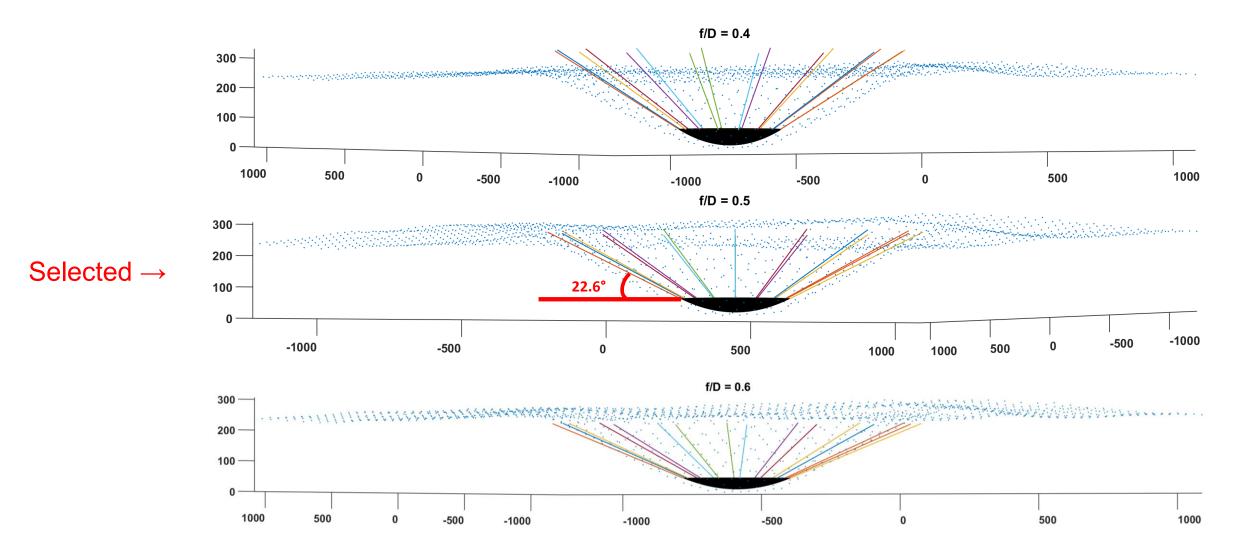
Backup Slides


Concept of Operations


Step 2: Fire Anchors to Crater Rim

Step 3: Tension Lift Wires


Step 4: Deploy Feed


Step 5: Deploy Reflector

Step 6: Calibrate LCRT

Focal Length/Diameter Ratio

Mass Budget

Mission Risk Classification

Priority

HIGH

National

Mission Lifetime: MORE THAN 5 YRS

Launch Constraints: CRITICAL
Re-flight Opportunities: NONE

In-flight Maintenance: N/A

Failure would have extreme consequences to public safety or high priority national science objectives. In some cases, the extreme complexity and magnitude of development will result in a system launching with many low to medium risks based on problems and anomalies that could not be completely resolved under cost and schedule constraints.

All practical measures are taken to achieve minimum risk to mission success. The highest assurance standards are used. Example Missions: HST and JWST

NASA Risk Classification & Safety

We believe LCRT will be a CLASS A mission

Mass Budget

	Current Best Estimate (kg)	Mass Growth Allowance	Predicted Mass (kg)
Payload	745	20%	894
Feed + Reflector	510		
Anchors + Projectile	207		
Beacon Spacecraft X 2	14 X 2		
Spacecraft Bus	482	20%	578
ACS Subsystem	11		
CDS Subsystem	38		
Mechanical Subsystem	220		
Power Subsystem	161		
Telecom Subsystem	32		
Thermal Subsystem	20		
Total Predicted Mass			1472
	JPL D	P9 Mass Margin	23%
Total Launch Mass			1754

Mass Budget

	NUMBE	R OF UNITS		MASS				POWER							NOTES AND INFORMATION
	Flight Units	Flight Spares	Ems and Prototypes	Basic Unit	. Basic Total Mass	Mass Growth Allowance	. Predicted Total Mass	UnitStandby	Unit Nominal	Unit Peak	Power Growth Allowance	Predicted Standby	Predicted Nominal	Predicted Peak	Notes Levi
RRIED ELEMENTS	_	_		[kg]	[kg] 745.0	[%] 20%	[kg] 894.0	[W]	[W]	[W]	[%]	[W]	[W]	[W]	1
Anchors and Projectiles	1		0	207.0		20%	248.4					0.0	0.0	0.0	3
Radar Antenna	1	0	0	510.0		20%	612.0	4				0.0	0.0	0.0	3
Beacon Spacecraft	2	0	0	14.0	28.0	20%	33.6								3
AYLOAD					<u>0.0</u> 0.0	<u>0%</u> 0%	0.0								3 1
Payload Subsystem 1 Payload Subsystem 2				\rightarrow	0.0	0%	0.0	+							
Payload Subsystem 3			ĺ		0.0	0%	0.0								
PACECRAFT BUS					481.6	20%	<u>577.9</u>								1
Bus Passthrough					0.0	0%	0.0								2
ACS Subsystem				4	10.6	20%	12.7	4							2
Engineering Camera	6			1.5	9.0	20%	10.8	1.0	4.0	4.0		6.0	24.0	24.0	Cameras to cover 360 deg view for anchors and projectiles. Reference M2020 EDL Camera Mass. Other options r 3
IMU - LN-200S Sun Sensor	2 6	0	0	0.8	1.5 0.1	20%	1.8 0.1					0.0	0.0	0.0	May want an IMU (landers typically have them). Baseline heritage IN Link 3
				0.01	0.1	20/0	0.1								May need/want sun sensors.
															3
CDS Subsystem					38.0	20%	45.6								2
Standard Avionics Design	2	0		9.5	18.0	20%	21.6	0.0	20.0	50.0		0.0	40.0	100.0	Only one unit needs to be on at a time. Dual string cold.
Solid State Recorder Interface Board and Controller	2	0	0	8.0 1.0	16.0 4.0	20%	19.2 4.8	5.5	11.0	22.0 2.5		11.0	22.0 8.0	44.0 10.0	Single unit capable of storing up to 8 TB. May only need one unit. Link 3
Interrace Board and Controller	4	U	0	1.0	4.0	20%	4.8	1.0	2.0	2.5		4.0	8.0	10.0	Generic interrace board to control/interface with motors or other elements. 3
															3
Mechanical Subsystem					220.0	20%	264.0		_	_					
Structure (assuming carried elements)	1	0	0	160.0		20%	192.0					0.0	0.0	0.0	Estimated from parametric model (w/ carried elements) 3
Structure (assuming no carried elements)	0	0	0	/	0.0	20%	0.0					0.0	0.0	0.0	Estimated from parametric model (w/o carried elements) 3
Cabling	1	0	0	60.0	60.0	20%	72.0					0.0	0.0	0.0	Estimated from parametric model.
				/			-								3
Power Subsystem			-		160.6	20%	192.7								3
EPS / PCDU	1	0	0	11.0	11.0	20%	13.2	_				0.0	0.0	0.0	Estimated from parametric model.
Solar Arrays	1	0	0	1.4	1.4	20%	1.7	7				0.0	0.0	0.0	Pass through value from original MEL 3
Batteries	19	0	0	7.8	148.2	20%	177.8	/				0.0	0.0	0.0	Pass through value from original MEL EnerSys ABSL 8s16p 3
															3
				4	_			4							3
Propulsion Subsystem				4	0.0	0%	0.0	4							2
Telecom Subsystem Small Deep Space Transponder (SDST)	2	0	0	3.2	32.4 6.4	20%	38.9 7.7	_				0.0	0.0	0.0	Typical deep space transponder Link 3
Amp Equipment	1	0	0	11.0	11.0	20%	13.2					0.0	0.0	0.0	3
HGA Antenna Gimbal	1	0	0	4.0	4.0	20%	4.8	/				0.0	0.0	0.0	Gimbal for HGA - May require to secure better telecom link
High Gain Antenna (HGA)	1	0	0	8.0	8.0	20%	9.6					0.0	0.0	0.0	High gain antenna for high data rates - Patch or parabolic antenna 3
Medium Gain Antenna (MGA)	2	0	0	1.0	2.0	20%	2.4					0.0	0.0	0.0	Medium gain antenna with medium beam width - Patch or horn
Low Gain Antenna (LGA)	2	0	0	0.5	1.0	20%	1.2					0.0	0.0	0.0	
		_		/				/							Low gain antenna (omni) with large beam width 3
Thermal Subsystem					20.1	20%	24.1								2
MLI				/	0.0	30%	0.0					0.0	0.0	0.0	3
Sensors	50	0	0	0.00		20%	0.1					0.0	0.0	0.0	3
Heaters				/	0.0	20%	0.0					0.0	0.0	0.0	3
Thermal Control System	2	0	0	10.0	20.0	20%	24.0					0.0	0.0	0.0	Planetary and Lunar Environment Thermal Toolbox Elements (PALETTE) 3
															3 3
ROPELLANT & PRESSURANT ROLLUP					0.0	0%	0.0								1
Carried Elements															
Dry Basic Ma:	ss 745	5 kg												1	
Dry Predicted Ma	ss 894	4 kg													
Payload				Note	This design u		ic models that				included a	and have	to be		
Dry Basic Mas		0 kg				su	pported by the	e mechanic	al subsyst	em.					
Dry Predicted Mas		0 kg	-												
Base Station														l	
Dry Basic Ma: Dry Predicted Ma:		2 kg	1												
Dry Predicted Mas	as 5/6	ь ку	1												
FLIGHT SYSTEM ROLLUP															
Flight System			T												
Dry Basic Ma:		7 kg	1												
Dry Predicted Ma:			1												
DP9 Dry Mass Margin Percen		3 %		(Systems Mar	gin)										
Dry Allowable Mas		4 kg	1												
			1												
Propellant Ma	ss (0 kg	1												
			1												
Wet Launch Ma															
Total MG	A 43	3 %													

		MEL: Anchors and Lift Wires				
		Equipment	Units	CBE / unit	Total	Details
		equipment	Onits	CDE/ unit	Total	(Vinod - 2022/03/22)
						Reference mass: 90 kg
		Anchor for Reflector	12		39.24	
		Anchor for Reflector	12		33.24	Lift wire inclination angle: theta = 30 deg Tension: 42.15 N
						10.000
					7	Material: AMS 5629 (Steel)
					•	(Vinod -2022/03/22)
						Reference mass: ?
		Anchor for Receiver	4		13.08	Lift wire inclination angle: theta = 10 deg
						Tension: 105.28 N
						Material: AMS 5629 (Steel)
en en	,					
Š		Projectile launch hardware (gas-compressed laun	1	5		(Rebecca - 2022/03/31) Gas-compressed launcher Pressure Vessel: 5 kgLaunch Barrel (20x): 1 (20) kgGa
ĕ		Trojectiic laalieli laa aware (gas compressed laali	-	,		(madecal zozz/os/sz/ das compressed idamenter ressure ressure sesser surface (zox/, z (zo) kgod
-						
Anchor module						
Ā						
		Projectile launch hardware (launch barrel)	16	2.51	40.16	
		Projectile launch hardware (gas valve system)	16	0.3	4.8	
		Projectile launch hardware (shock structure)	16	2		
		Internal Spool (non powered)	16	1	16	Not updated
		Actuator (passive)	16	1	16	Not updated
		Electronics (limited life/complexity) Anchor Module Subtotal	16	1	16 182,28	Not updated
		Anchor Module Subtotal			182.28	
	μ.	Lift Wire	4	0.59	2.20	Selected product for the Core Wire: Emma Kites - Black Kevlar CordDiameter = 0.4 mmLinear Density
흠	Receiver	LIII WIFE	4	0.59	2.36	Selected product for the core wire: Emma kites - Black Keviar Cordinameter = 0.4 mmLinear Density
8	ő					
Σ	~					
i.						
Lift Wires Module						
5						
		Spool Actuators (per lift wire)	4	1	4	Not updated
	J	Receiver Subtotal			6.36	
		Lift Wire	12	0.59	7.08	Same as for the receiver
		Spool Actuators (per lift wire)	12	1	12	Not updated
		Reflector Subtotal			19.08	
		Lift Wire Module Subtotal Total CBE Mass			25.44 207.72	
S	2	Assumed MGA	20%		207.72	According to JPL DP9 for MDR/PMSR
Totals		Required Mass Margin	23%			According to JPL DP9 for MDR/PMSR According to JPL DP9 for MDR/PMSR
2		MEV Mass = CBE × (1 + MGA + Required Margin)	2370		297	According to the Driving Pivion
		cot required warging				

		MEL: Anter	ına			
		Equipment	Units	CBE / unit	Total	Details
		Structure	1	80	80	(Gaurangi)
	ě	Thermal	1	10		We don't really need thermal control (Saptarshi)
	ë	Mechanical Subtotal				
	æ	Avionics Subtotal			5	From Sunrise Mission (Joe Lazio)
n a		Receiver Subtotal			95	
Antenna		Tension Cable Structure	1	240	240	(Manan)
Ā	ō	Compliant Knit Mesh	1	120		(Manan)
	Sct	Hub for Stowed Detector	1	50		(Manan)
	Refle	Mechanical Subtotal			410	
	æ	Avionics Subtotal				(Saptarshi)
		Reflector Subtotal			415	
		Total CBE Mass			510	
-	lotals	Assumed MGA	20%			According to JPL DP9 for MDR/PMSR
	0	Required Mass Margin	23%			According to JPL DP9 for MDR/PMSR
		MEV Mass = $CBE \times (1 + Contingency)$			729	

Potential Lunar Landers

Landers eligible to bid on CLPS Program contracts	Lander	Company	Launch Vehicle	PL Delivery Capacity [kg]	Min Surface Operations Duration [Earth days]	Cost per kg of PL [\$ M/kg]	Nominal Power per kg of PL [W/kg]	Peak Power per kg of PL [W/kg]		PUG availability
	Peregrine	Astrobotic Technology	ULA Vulcan Centaur	100	8	1.2	1.0	2.5	10	2021
Awarded with a contract	Griffin (Polar configuration)	Astrobotic Technology	Space X Falcon Heavy	625	14	1.2	1.0	2.5	10	2021
	Blue Ghost	Firefly	Space X Falcon 9	up to 150	14	/	3.0*	4.3*	67*	2021
	Nova-C	Intuitive Machine	Space X Falcon 9	100	14	/	2.0*	/	/	/
	XL-1	Masten Aerospace	Space X Falcon 9	100	<12	/	0.5-1.0	/	50*	2019^
	Artemis-7	Draper Laboratory	/	16	<14	1	6.4*	15*	100*	2018
	McCandless Lunar Lander	Lockheed Martin	/	up to 350 (evolvable to 1000+)	14	/	1.1*	/	0.29 (evolvable to > 2.9)*	2019
Not awarded yet	MX-1/MX-2/MX-5/MX- 9	Moon Express	/	30/30/150/500	/	/	/	/	/	/
	Z-01/Z-02	OrbitBeyond	Space X Falcon 9	50/50	/	/	/	/	/	/
	Blue Moon	Blue Origin	Blue Origin New Glenn	4,500	/	/	/	/	/	/
	Starship	Space X		100,000+	/	/	/	1	/	/
Lander concepts by	Nova-D/Nova-M	Intuitive Machine	1	500+/5000	/	/	1	1	/	1
CLPS eligible contractors	XL-2/Xeus	Masten Aerospace	1	500 /1500	/	1	1	/	/	1

Acronyms: PL = Payload, PUG = Payload User Guide

^ not for general distribution

^{*}estimated as the total available power/data rate to the PLs, divided by the PL delivery capacity in kg

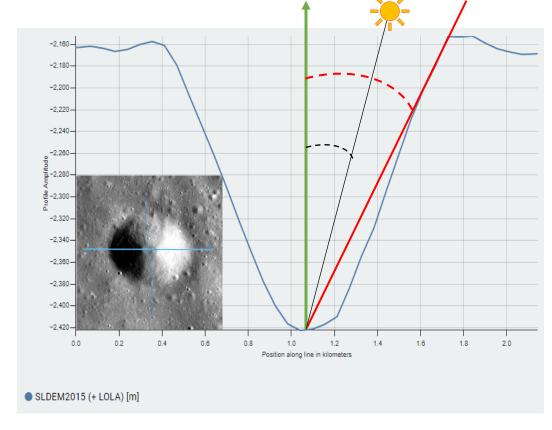
Power Budget

LCRT Power Budget

	Element	Description	Deploy Power CBE (W)	Operate (Day) Power CBE (W)	Operate (Night) Power CBE (W)
	Power	Distribution (175m cable/line loss)	5	5	5
	Receiver operating power	RF part of the receiver	-	-	7
ē	Deployment	actuators, sensors, efficiency losses	10	-	-
eceiver	GNC	cameras, IMU	5	5	-
90	C&DH	computer, motor control, spool sensors	5	5	5
Ř		optical transceiver and conversion	10	10	-
	Thermal	active, TBD for lunar night	5	5	10 (0)
	Subtotal		40	30	27
	Power	distribution	5	-	-
_	· ·	actuators, sensors, efficiency losses	10	-	-
15	GNC	cameras, IMU	5	-	-
Reflector	C&DH	computer, motor control, tether sensors	5	-	-
Sel	Telecom	optical transceiver and conversion	10	-	-
	Thermal	passive only, TBD for lunar night	-	-	-
	Subtotal		35	0	0
	Total CBE Power		75	30	27
<u>=</u>	Assumed PGA	20%			
Total	Required Power Margin	23%			
	$MEV Power = CBE \times (1 + PGA +$		107	43	39
	Required Margin)		101	70	00

Battery Calculations

[i] Cater Illumination Conditions:

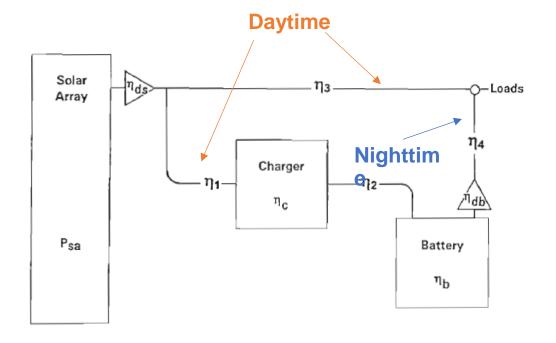

Min daytime: 10 Earth days

Max nighttime: 19 Earth days

Battery Options:

O ₁	verview	Properties						
Name	Vendor	Mass (kg)	Energy (Whr)	Energy Density (Wh/kg)				
EaglePitcher	SAR-10197	63.50	6600.00	104				
EaglePitcher	SAR-10199	35.00	3663.00	105				
EaglePitcher	SAR-10211	38.60	4380.00	113				
EnerSys	ABSL 8s16p 28V 24Ah	6.80	691.00	102				
EnerSys	ABSL 8s16p 28V 56Ah	7.80	1628.00	209				
EnerSys	ABSL 8s52p 28V 78Ah	22.80	2246.00	99				
EnerSys	ABSL 8s84p 28V 126Ah	41.00	3628.80	89				

—— Crater profile


- - - Sun angle

- - Max Sun angle

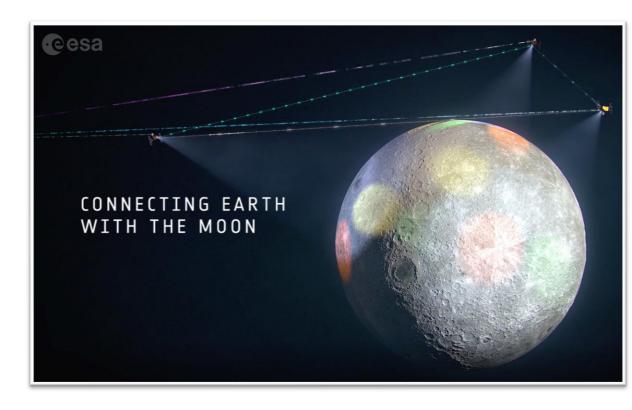
Battery Calculations

- Architecture: Direct Energy Transfer
- Solar Panel Mass = 9kg
- Battery Mass = 148kg
 - Assuming maximum Depth of

Discharge (DoD) of 70%

Data Budget

LCRT Data Budget

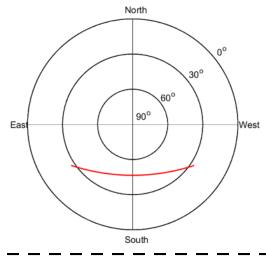

	Equipment	Units #	CBE / unit [bps]	Total [bps]	Acquisition Time (Earth days)	Total per lunar day + night (Kb)
Science	Science Payload	1	2.50E+03	2.50E+03	Lunar Night (19)	4.10E+06
Science	Subtotal			2.50E+03		4.10E+06
GNC	Camera	1	6.99E+02	6.99E+02	Lunar Day (10)	6.04E+05
	Subtotal			6.99E+02		6.04E+05
	Receiver	1	2.20E-03	2.20E-03	Lunar Day + Night (10 +19)	5.51E+00
	Reflector	1	2.20E-03	2.20E-03		5.51E+00
Haalth Manitarina	Anchor	20	2.20E-03	4.40E-02		1.10E+02
Health Monitoring	Battery	7	2.20E-03	1.54E-02		3.86E+01
moti dinonto	Solar Panel	2	2.20E-03	4.40E-03		1.10E+01
	Lander thermal sensors	2	2.20E-03	4.40E-03		1.10E+01
	Subtotal	33		7.26E-02		1.82E+02
Totals	Total CBE Data Rate Contingency	43%		3.20E+03		4.71E+06
	Total MEV Data Rate			4.57E+03		6.73E+06

Data generated: 0.84 GB per lunar day (Earth month)

Data Transfer to Earth: At a nominal data rate of 100KBps, we need 20hr to send 0.84 GB to Earth.

Earth-Moon Communication

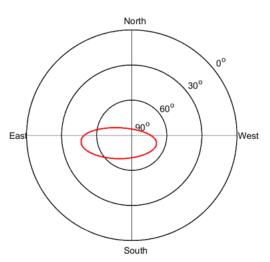
- Multiple COTS options:
 - LunaNet
 - Lunar Gateway
 - Nokia's cellular network on the Moon
 - **OESA's Moonlight**



ESA's Moonight, https://www.esa.int/Applications/Telecommunications_Integrate d_Applications/Lunar_satellites

Earth-Moon Communication using Relay Spacecraft

Lunar Equatorial Orbit

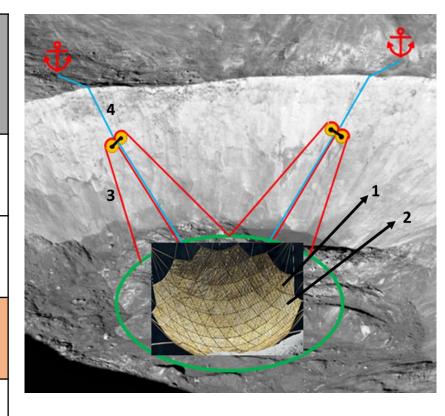


Earth-Moon L2 Point

Overhead trace of SC from base of the crater

Costing

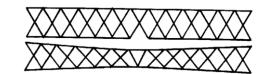
Rough Cost Estimate

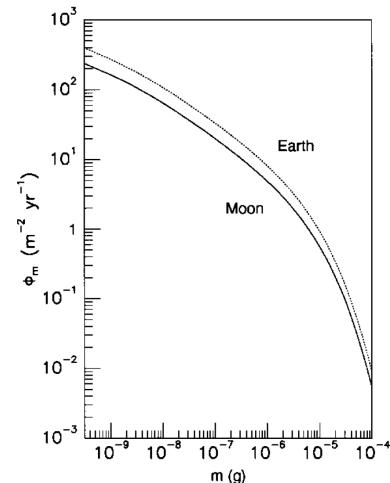

Cost disclaimer: The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Item	Subsystem Cost (\$M)	Total Cost (\$M)
Flight Segment		\$450
350m diameter Reflector + Feed	\$140	
Beacon spacecraft (X2)	\$50	
Projectile-based deployment system	\$100	
Base station	\$150	
Communication-relay	\$10	
MOS + GDS		\$450
Lunar Lander		\$1100
Total Cost (before reserve)		\$2000
	Reserves (30%)	\$600
Total Cost with Reserve		\$2600

Micro-Meteoroid Risk

Micro-Meteoroid Impact Risk


ID	Cable type	Cross section	Total surface area (m²)	Consequence of Cut
1	Mesh	0.025 mm	577	Negligible impact on surface RMS error
2	Internal cable	10 mm x 0.2 mm	96	Small impact on surface RMS error
3	Support cable	20 mm x 0.2 mm	211	Significant impact on surface RMS error
4	Lift wire (beyond pulley)	2 mm	1.2	Significant impact on surface RMS error

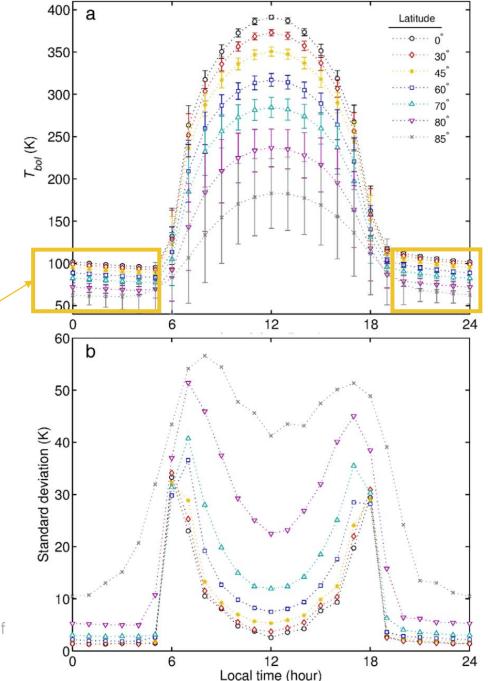


Severing Probability for Support Cables

Parameter	Value
Meteoroid density	500 kg/m ³
Minimum crater size for cutting support cable = 1/2 width	10 mm
Meteoroid size for 10 mm crater (due to low cable	5 mm
thickness)	
Threshold meteoroid mass Poisson statistics: $P(k) = \frac{\lambda^k e^{-\lambda}}{k}$	32.7 mg

- Probability of severing impact in one year: 0.0014
- Failure resistant tether design not needed

Cumulative meteoroid flux

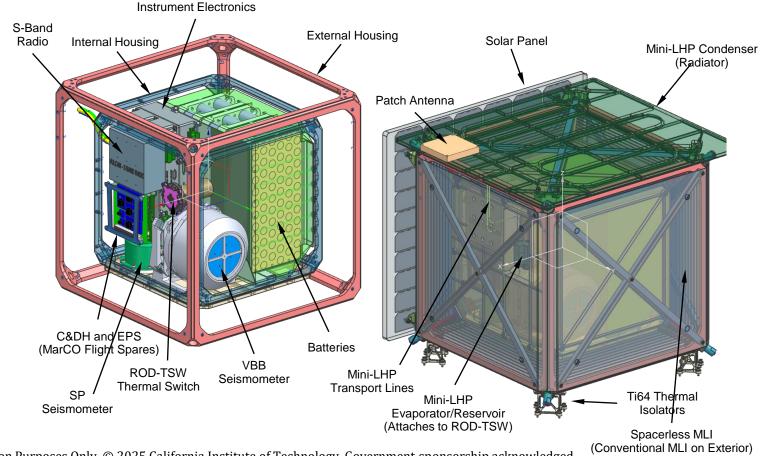

[2] R. P. Hoyt and R. L. Forward, "Failure resistant multiline tether," Jan. 16 2001, uS Patent 6,173,922.

^[1] V. Vanzani, F. Marzari, and E. Dotto, "Micrometeoroid impacts on the lunar surface," LPI, p. 1481, 1997.

Thermal Management

Temperature during Lunar Night

- Lunar Surface Temperatures
- ΔTemp = 10K (during lunar night)


[1] J.-P. Williams, D. Paige, B. Greenhagen, and E. Sefton-Nash, "The global surface temperatures of the moon as measured by the diviner lunar radiometer experiment," Icarus, 2017.

Thermal Enclosures

Planetary and Lunar Environment
Thermal Toolbox Elements
(PALETTE)

Funded by: NASA GCD **ENCLOSURES ROD-TSW** DUAL ROD-TSW MINI-LHP DUAL STRAP THERMAL ISOLATOR & LANDER ADAPTER LUNAR INSTRUMENT (ROD-TSW + MINI-LHP)

Infusion: Farside Seismic Suite (FSS) in 2025

Lunar Dust Management

Lunar Dust – Mass

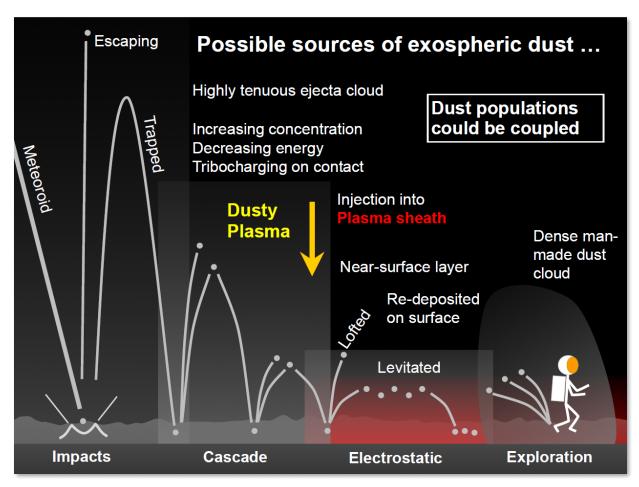


Figure from Tim Stubbs

Additional Mass on Reflector

Dust deposition rate = 20-100 μ g/cm^2/year

Mass added = 0.885kg per year Insignificant!

- [1] Li et. al., "In situ measurements of lunar dust at the Chana'E-3 landing site in the northern Mare Imbrium." Journal of Geophysical Research: Planets 124, 2019
- [2] Hollick, Monique, and Brian J. O'Brien. "Lunar weather measurements at three Apollo sites 1969–1976." Space Weather, 2013.
- [3] Stubbs, Timothy J., Richard R. Vondrak, and William M. Farrell. "A dynamic fountain model for dust in the lunar exosphere." Dust in Planetary Systems, 2007.

Lunar Dust — RF

- Lofted dust is transparent in LCRT wavelength band
 - Size of lofted dust grains (0.1-10 µm) << wavelength of radio waves (10-50 m)
- Radio waves are unaffected by electrons in lofted dust
 - Total electron content of lofted dust along line of sight: $\epsilon = 1 \frac{\omega_p^2}{\omega^2}$, where $n_e \sim 10^8 m^{-3}$, $\omega_n \sim 10^{11} s^{-1}$, $\omega \sim 10^{14} s^{-1}$
 - Plasma frequency << Radio frequency, so $\epsilon=1$
- Lofted dust will not affect LCRT's science performance!

Lunar Dust Management

- Exploration-related dust will stick to instruments, solar panels, etc.
- OCan cause thermal management issues

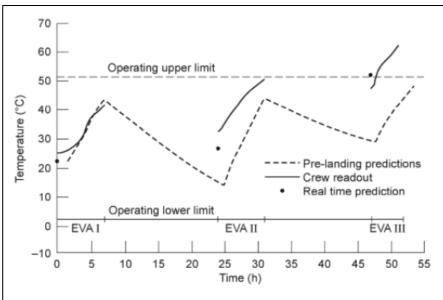


Figure 4-1. Plot of the LRV battery temperature for Apollo 16 (McKay, 1972). As shown in the plot, attempts to brush the dust off of the radiator between EVAs were largely ineffective in reducing the operating temperature.

Recommended dust mitigation technologies

Application	Lunar/asteroidal environment	
Solar panels and optical surfaces Small lenses	Electrodynamic Dust Shield with transparent electrodes SPARCLE	
Large thermal control surfaces	Chemically pretreated surface coating	
Small thermal control surfaces	Brush/wiper	
Near terminator optical surfaces	Electrostatic Lunar Dust Repeller	
Near terminator thermal surfaces	Electrostatic Lunar Dust Collector	
Cabins	Ceramic nano/microfiber filter	
Astronauts' suit	Brush	

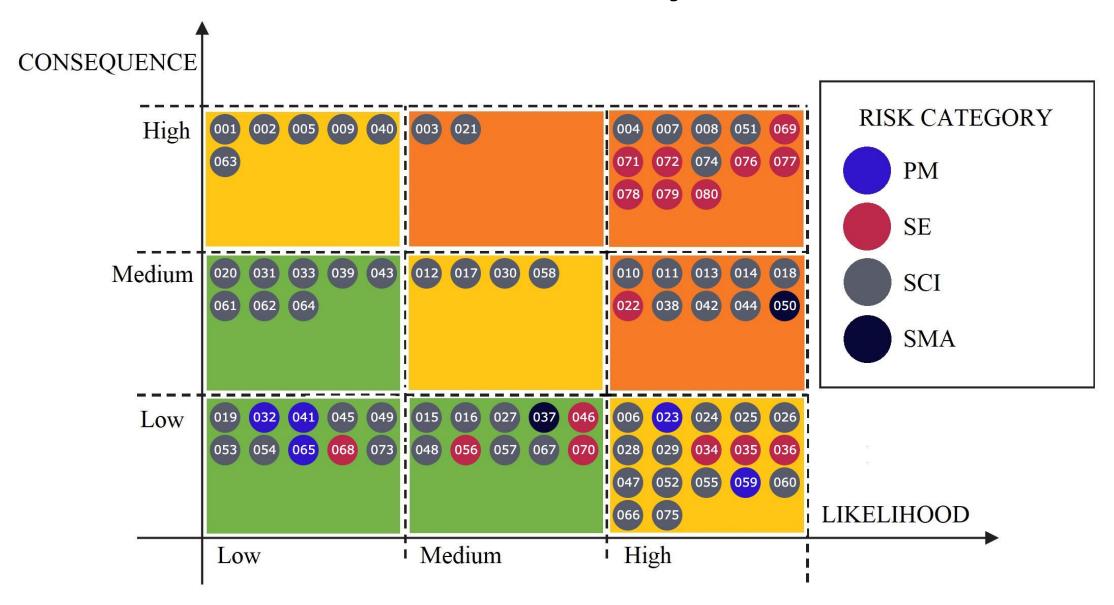
- [1] McKay, Saturn V Launch Vehicle Flight Evaluation Report-AS-511, Apollo 16 Mission, Saturn V Flight Evaluation Working Group, 1972.
- [2] Afshar-Mohajer, Nima et. al., "Review of dust transport and mitigation technologies in lunar and Martian atmospheres." Advances in Space Research, 2015.

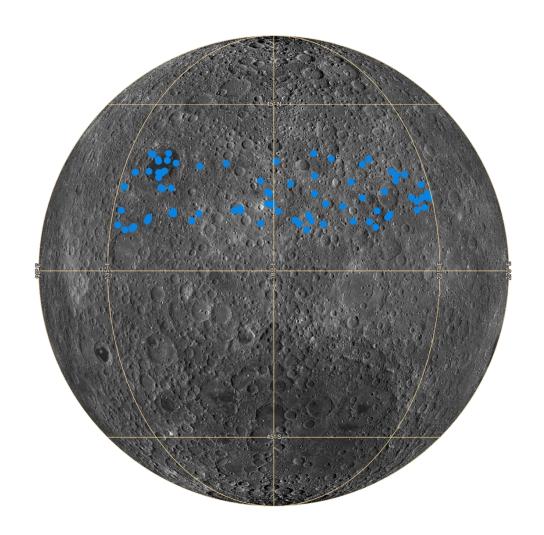
Local Position System

Local Positioning System

Terrestrial Laser Scanner (TLS):

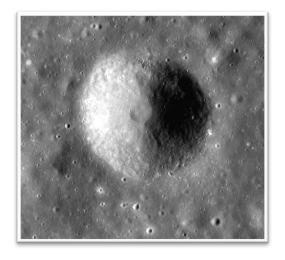
- Range: 2.5 km on Earth
- Accuracy: 5 mm
- Weight: 9.8 kgs
- Power: nominal 70 W, maximum 87 W
- Size: 206mm x 346mm
- Nominal Operating Temperature: 10°C to 50°C


Deployed at the 100 m Green Bank Radio Telescope


Laser Scanning System

Risk List

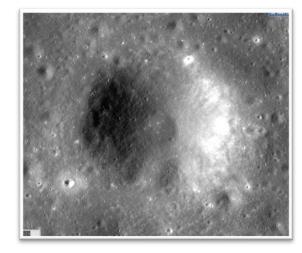
Risk Analysis



All Craters Studied

Backup Craters (Farside)

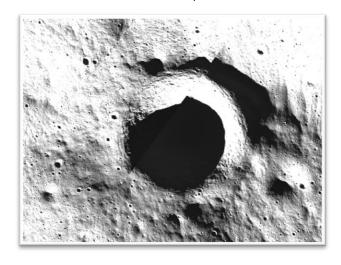
Lon: 141.9 E Lat: 4.85 N
Diameter: 1.26 km Depth: 0.217 km



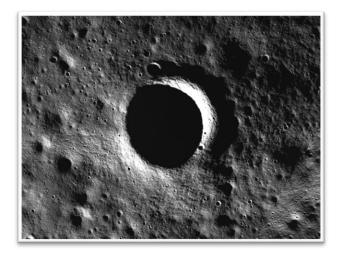
Lon: 142.2 E Lat: 4.02 N


Diameter: 1.51 km Depth: 0.289 km

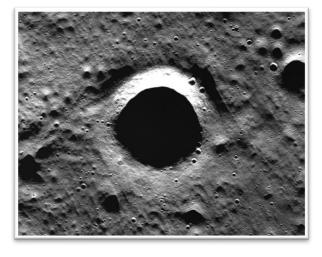
Lon: 145.8 E, Lat: 9.57 N Diameter:1.392 km, Depth: 0.243 km



Lon: 147.0 E, Lat: 13.1 N
Diameter: 1.079 km, Depth: 0.202 km



Backup Craters (South Pole)


Lon: 206.20 E Lat: -88.99 N Diameter: 1.1 km Depth: 0.200 km

Lon: 224.40 E Lat: -87.41 N
Diameter: 1.2 km Depth: 0.225 km

Lon: 178.68 E Lat: -87.06 N Diameter: 1.0 km Depth: 0.170 km

LCRT Publications

- 1. R. Wang, V. Gehlot, S. Bandyopadhyay, A. Goel, B. Byron, P. McGarey, R. Wilson, K. Jenks, "Lift Wire Deployment and Anchoring System for the Lunar Crater Radio Telescope on the Far Side of the Moon," AIAA SciTech Space Exploration, January 2023, accepted.
- 2. M. Arya, A. Verniani, M. Delapierre, D. Pisanti, G. Gupta, A. Goel, J. Lazio, P. Goldsmith, S. Bandyopadhyay, "Kilometer-Scale Parabolic Reflector for a Radio Telescope in a Lunar Crater," AIAA SciTech Spacecraft Structures, January 2023, accepted.
- 3. A. Goel, S. Bandyopadhyay, J. Lazio, P. Goldsmith, D. Bacon, A. Amara, S. Furnaletto, P. McGarey, R. Rafizadeh, M. Delapierre, M. Arya, D. Pisanti, G. Gupta, N. Chahat, A. Stoica, I. Nesnas, M. Quadrelli, G. Hallinan, K. Jenks, R. Wilson, "Probing the Cosmic Dark Ages with the Lunar Crater Radio Telescope," arxiv arxiv:2205.05745, White Paper to the Biological and Physical Sciences Decadal Survey 2021, DOE's Snowmass 2022
- 4. A. Goel, D. Pisanti, P. Mcgarey, G. Gupta, M. Arya, N. Chahat, P. Goldsmith, J. Lazio, S. Bandyopadhyay, "Ultra-Long Wavelength Radio Astronomy Using the Lunar Crater Radio Telescope (LCRT) on the Farside of the Moon," 240th American Astronomical Society (AAS) Meeting, Pasadena, California, June 2022. accepted. [Abstract only]
- 5. G. Gupta, M. Arya, A. Goel, S. Bandyopadhyay, P. Goldsmith, P. Mcgarey, J. Lazio, N. Chahat, "Detector Development for the Lunar Crater Radio Telescope," Wireless, Antenna and Microwave Symposium (WAMS), Rourkela, India, June 2022. accepted.
- 6. P. Culbertson, A. Goel, P. Mcgarey, M. Schwager, S. Bandyopadhyay, "Multi-Robot Assembly Scheduling for the Lunar Crater Radio Telescope on the Far-Side of the Moon," IEEE Aerospace Conference, Big Sky, MT, Mar. 2022.
- 7. A. Goel, S. Bandyopadhyay, P. McGarey, R. Rafizadeh, P. Goldsmith, J. Lazio, A. Stoica, M. Quadrelli, I. Nesnas, G. Hallinan, "Ultra-Long Wavelength Radio Astronomy using the Lunar Crater Radio Telescope (LCRT) on the Farside of the Moon," Lunar Surface Science Workshop, NASA Biological and Physical Sciences Division, Virtual, Aug. 2021. [Abstract only].

Pre-Decisional Information – For Planning and Discussion Purposes Only, © 2025 California Institute of Technology. Government sponsorship acknowledged.

Big Picture Overview of the NASA Astrophysics Environment

2020 Astrophysics Decadal

C. Report of the Panel on
Cosmology (pg 247--263)

LCRT's ScienceGoals

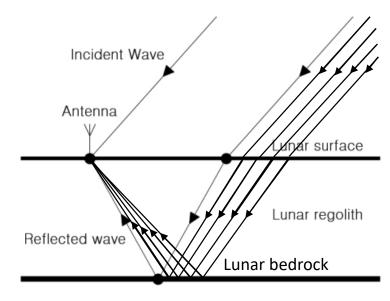
BOX C.1 Summary of Science Questions						
C-Q1: What set the Hot Big Bang in motion?	C-Q1a: Primordial gravitational waves C-Q1b: Non-Gaussianity of the large-scale structure of the universe C-Q1c: The initial power spectrum of density fluctuations					
C-Q2: What are the properties of dark matter and the dark sector?	C-Q2a: Dark sector signatures in small-scale structure C-Q2b: Dark sector imprints on Big Bang nucleosynthesis and recombination C-Q2c: Annihilation by-products					
C-Q3: What physics drives the cosmic expansion and large-scale evolution of the universe?	C-Q3a: The physics of cosmic acceleration C-Q3b: The properties of neutrinos C-Q3c: End-to-end tests of cosmology					
C-Q4: How will measurements of gravitational waves reshape our cosmological view?	C-Q4a: The stochastic gravitational wave background C-Q4b: Standard sirens as a new probe of the cosmic distance scale C-Q4c: Light fields and other novel phenomena					
Discovery Area: The Dark Ages as a cosmological probe	C-DA1: The end of the Dark Ages C-DA2: The future of primordial density mapping					

Pre-Decisional Information – For Planning and Discussion Purposes Only, © 2025 California Institute of Technology. Government sponsorship acknowledged.

2020 Astrophysics Decadal

C. Report of the Panel on Cosmology (pg 247--263)

Unlocking this cosmological window will require advances in both measurements and theory, but it appears attainable in the coming decade. A goal for the coming decade is reconnaissance across a wide range of redshift, primarily with next-generation interferometric mapping supported by global single-receiver measurements, in order to map the temperature history of the intergalactic gas. While small changes in the timing of galaxy formation can be caused by astrophysical details, large changes in when structure formed would be a hallmark of new physics in the dark sector. As our understanding of reionization and the late Dark Ages improves, we will increasingly be able to disentangle the astrophysics of reionization from effects of cosmology.

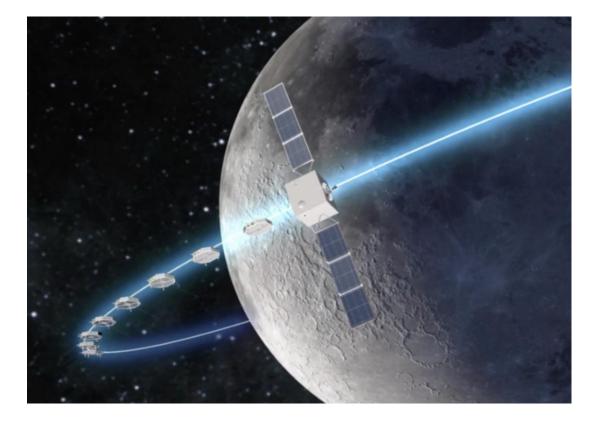

Lunar Surface Concepts

	CLIPART	LCRT	FARSIDE	FarView
	$N = 21 \stackrel{\text{T}}{=} \stackrel{\text{L}_{11}}{=} \stackrel{\text{L}_{12}}{=} \stackrel{\text{L}$		top view	
Description	40 m Log Periodic Antenna on the surface	Lunar Crater Radio Telescope	128x2 dipole antennas on 4 spiral arms	100000+ dipole antennas, using ISRU
Science	• global Dark Ages signal?	global Dark Ages signal	global Dark Ages signal exoplanetary magnetospheric emissions	 global Dark Ages signal power spectrum of Dark Ages signal exoplanetary magnetospheric emissions
Estimated Cost	\$1B (cost + lander + reserves)	\$0.9B (cost) + lander + reserves	\$1.2B (cost + reserves) + lander	~\$5B (not sure)
Concerns	poor isolation from regolith		regolith interactions	regolith interactions

Cost disclaimer: The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Lunar Surface Concepts

- Undesirable effects due to the interaction between lunar regolith and long-wavelength radio waves.
- LNSD (like sparse array) vs SNLD (like LCRT):
 - Every antenna has to be thermally regulated and powered
 - The data from every antenna has to be transported to a central hub, either using thermally-shielded and micrometeorite-resistant wires or using some lunar surface communication.

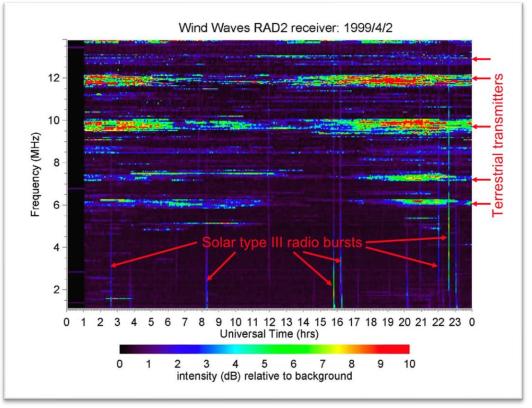

^[1] X. Gong, D. A. Paige, M. A. Siegler, and Y.-Q. Jin, "Inversion of dielectric properties of the lunar regolith media with temperature profiles using Chang'e microwave radiometer observations," IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 2, pp. 384–388, 2014.

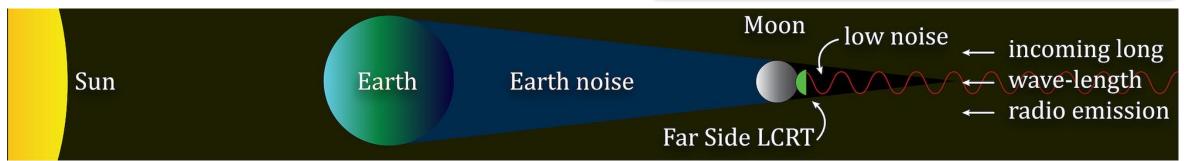
^[2] Z. Mo, H. Mao-Hai, and Y. Yi-Hua, "Simulations of ultra-long wavelength interferometers in earth orbit and on the lunar surface," Research in Astronomy and Astrophysics, vol. 15, no. 3, p. 443, 2015.

^[3] B. M. French, G. Heiken, and D. Vaniman, Lunar sourcebook: A user's guide to the Moon. CUP Archive, 1991.

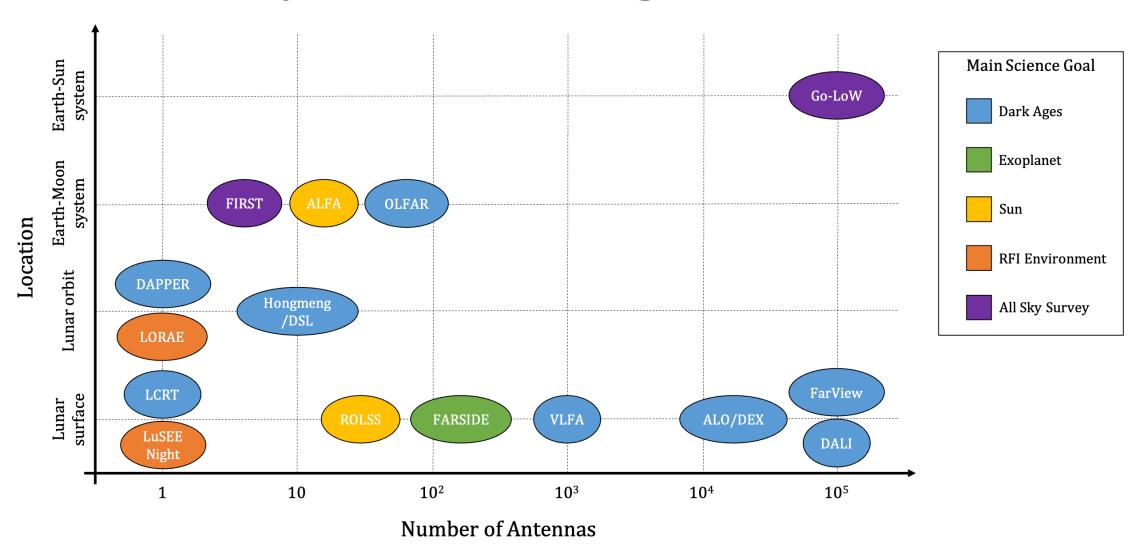
Sat. Constellation Concepts

- Lunar-orbiting satellite missions:
 - China's Hongmeng Constellation
 - Lunar Observer Radio Astronomy Experiment (LORAE)
 - Dark Ages Radio Explorer (DARE)
 - Small time (25% per orbit) in radio quiet zone
 - Thermal-instability due to rapid thermal cycles while orbiting the Moon.
- Earth-Moon Lagrangian L2 point:
 - Astronomical Low-Frequency Array (ALFA)
 - Formation-flying sub-Ionospheric Radio astronomy
 Science and Technology (FIRST)
 - Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR)


China's Hongmeng Constellation


Farside's Advantages

Challenging Noise Sources:

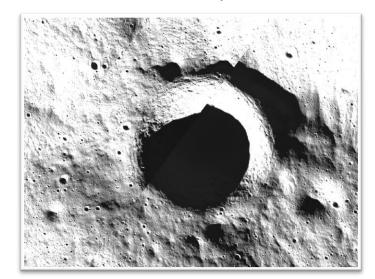

- **X** Galactic foreground
- **X** Earth
- **X**Sun

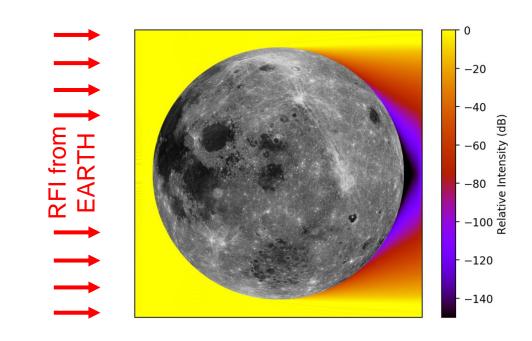
Bassett et. al. "Characterizing the Radio Quiet Region Behind the Lunar Farside for Low Radio Frequency Experiments" Advances in Space Research, 2020

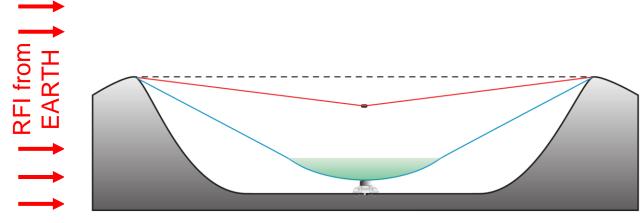
Survey of Dark Ages Missions

S. Bandyopadhyay, A. Goel, G. Gupta, D. Pisanti, P. Goldsmith, T.-C. Chang, M. Seiffert, C. Anderson, J. Lazio, "Survey of Mission Concepts for Exploring the Dark Ages Universe," IEEE Aerospace Conference, Big Sky, MT, Mar, 2025.

Astrophysics on the Moon using Artemis Mission?

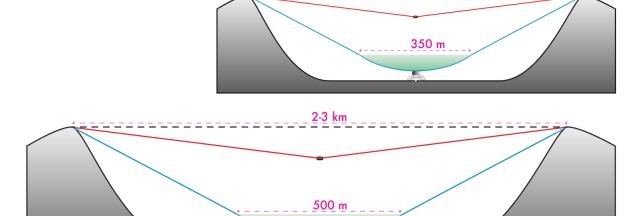

Artemis: Crater Location

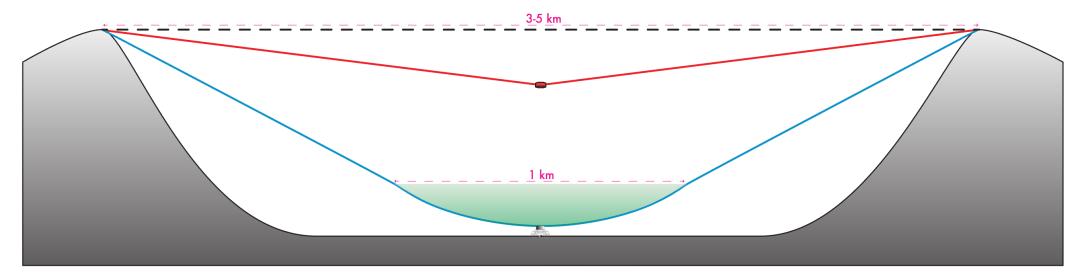

Near-side polar craters might be fine


We think crater walls might protect LCRT from Earth's RFI

Lon: 206.20 E Lat: -88.99 N

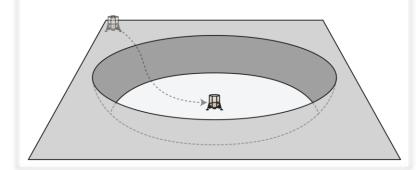
Diameter: 1.1 km Depth: 0.200 km

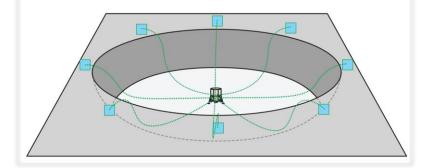




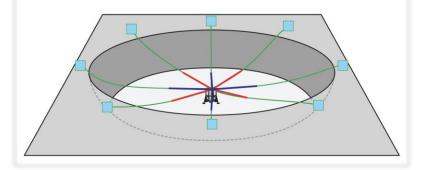
Artemis: LCRT Size

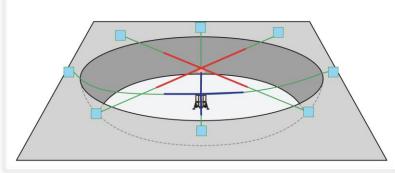
Potentially larger sizes, with better SNR

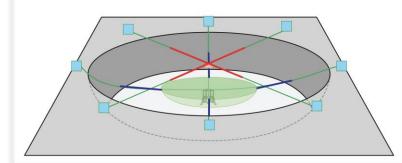

Concern: Structural integrity of crater walls

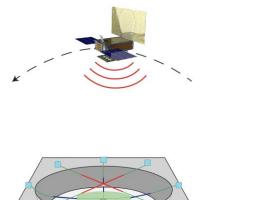


Artemis: ConOps with Astronauts


Step 1: Astronauts transport LCRT to Crater Floor


Step 2: Astronauts deploy Anchors at Crater Rim


Step 3: Tension Lift Wires (using Teleoperation)


Step 4: Deploy Feed (using Teleoperation)

Step 5: Deploy Reflector (using Teleoperation)

Step 6: Calibrate LCRT

LCRT as a RADAR

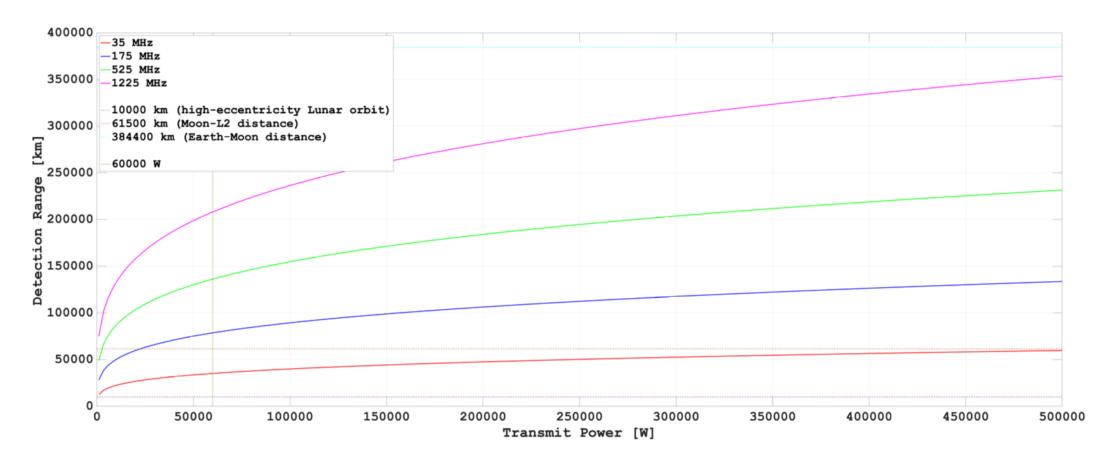
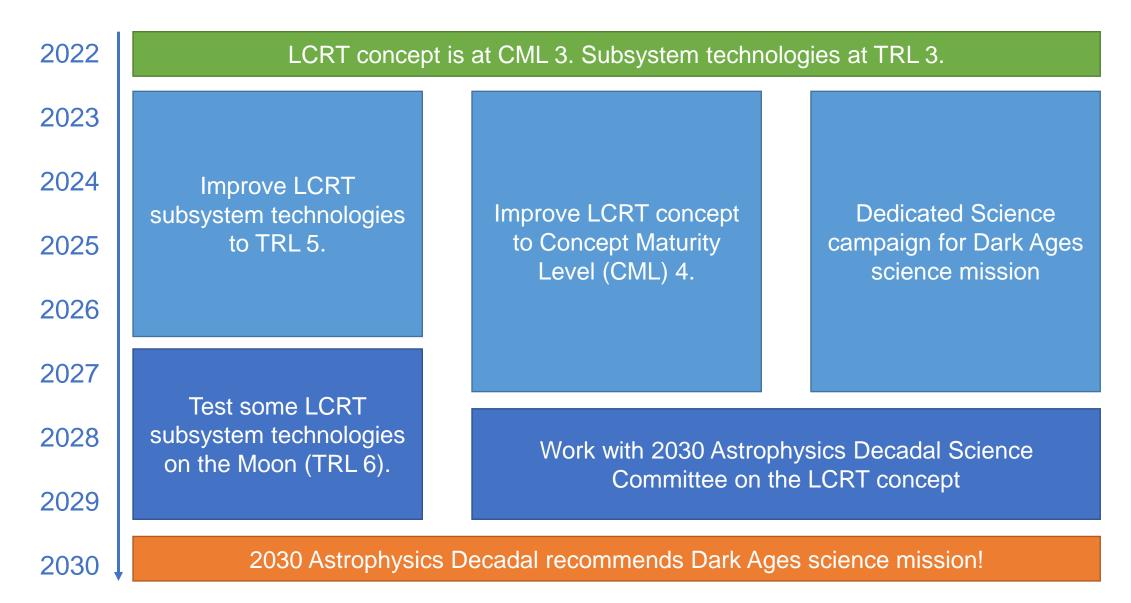
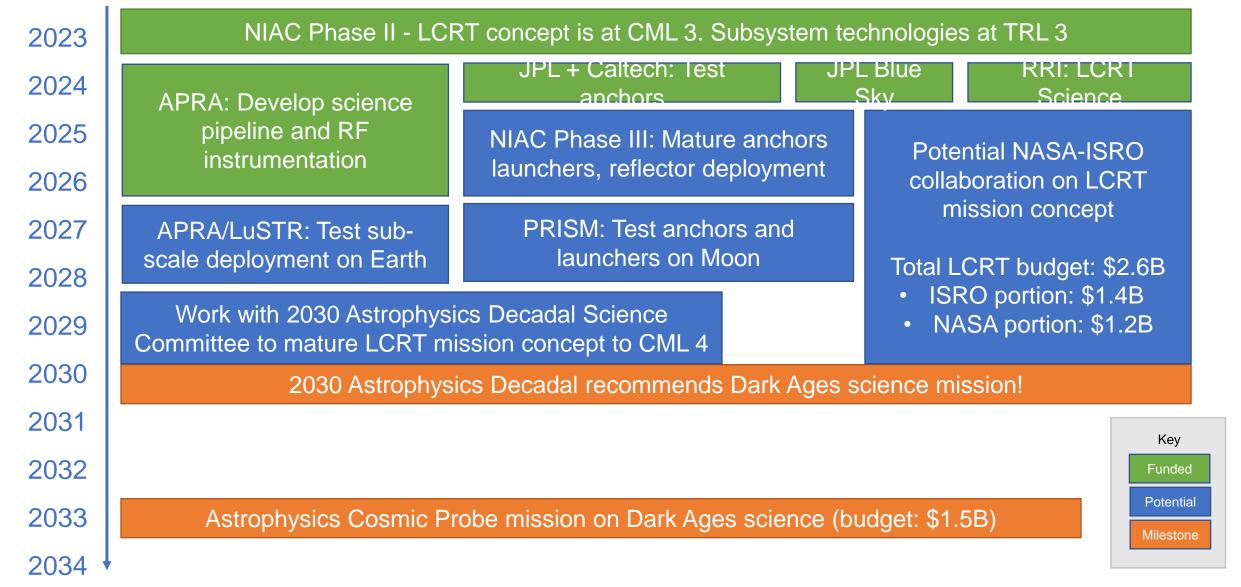



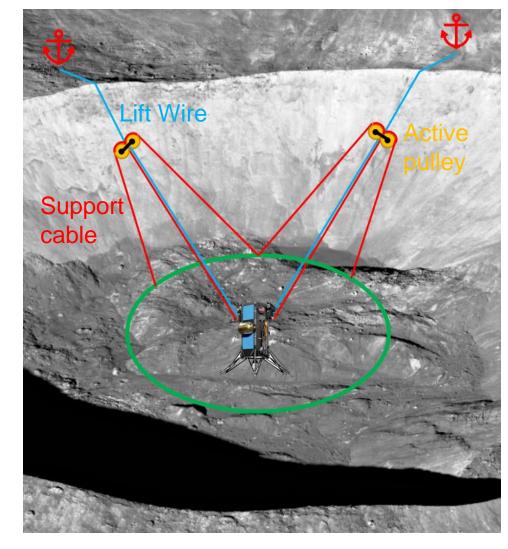
Figure 3: Transmit power vs. detection range for different frequencies with the 350 m diameter LCRT antenna. Note the horizontal lines marking significant altitudes: 10000km is an exemplary high eccentricity lunar orbit.


615000 km is the nominal Moon to L₂ Lagrange point distance, but high-altitude halo orbits could be at distances of 800000km. 384400km is the Earth–Moon distance.

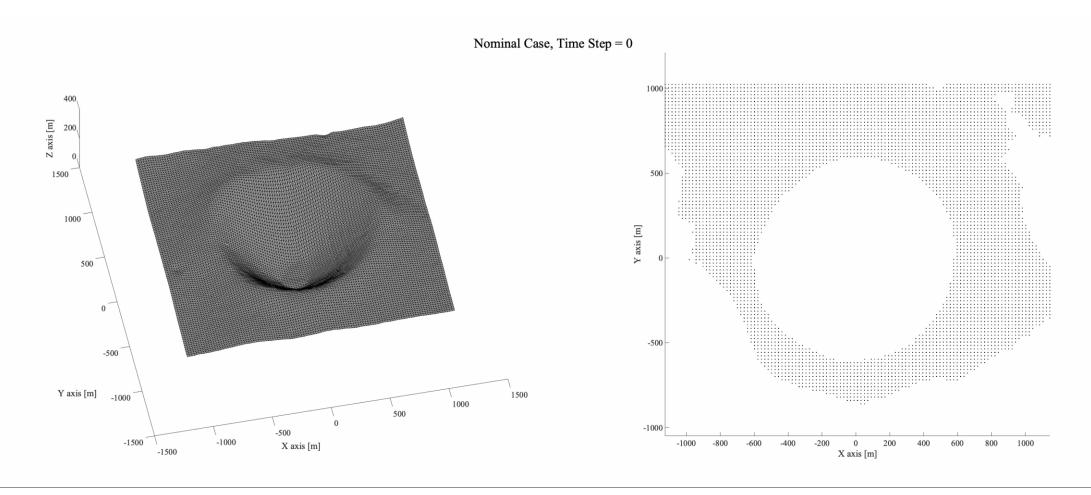
A transmit power of 60000 W is consistently used in all subsequent plots within this report.

Future Work

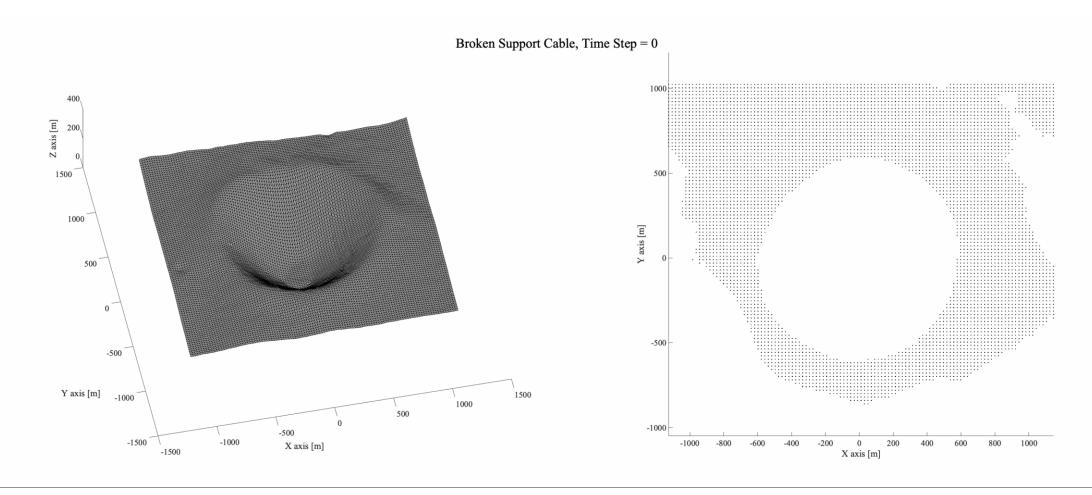
Future Work and Vision

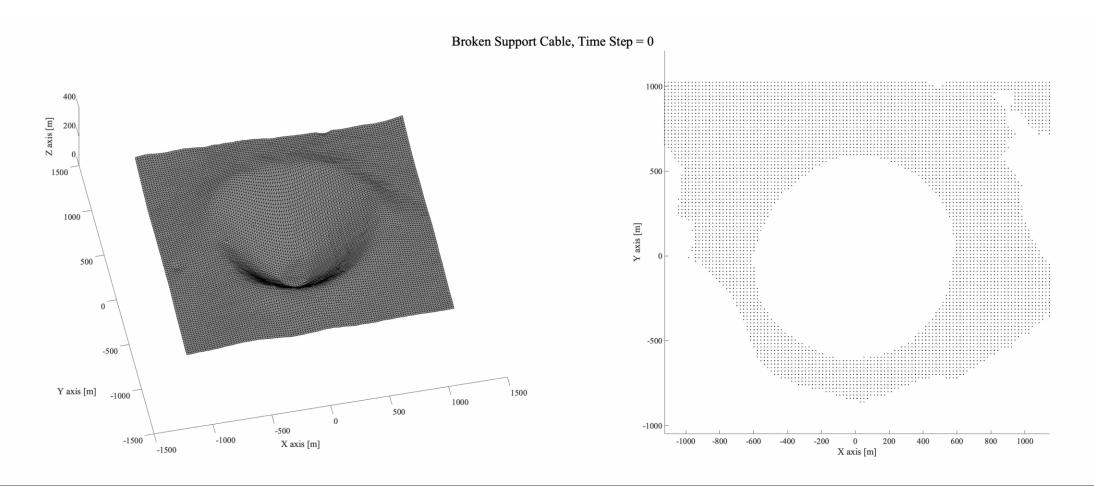


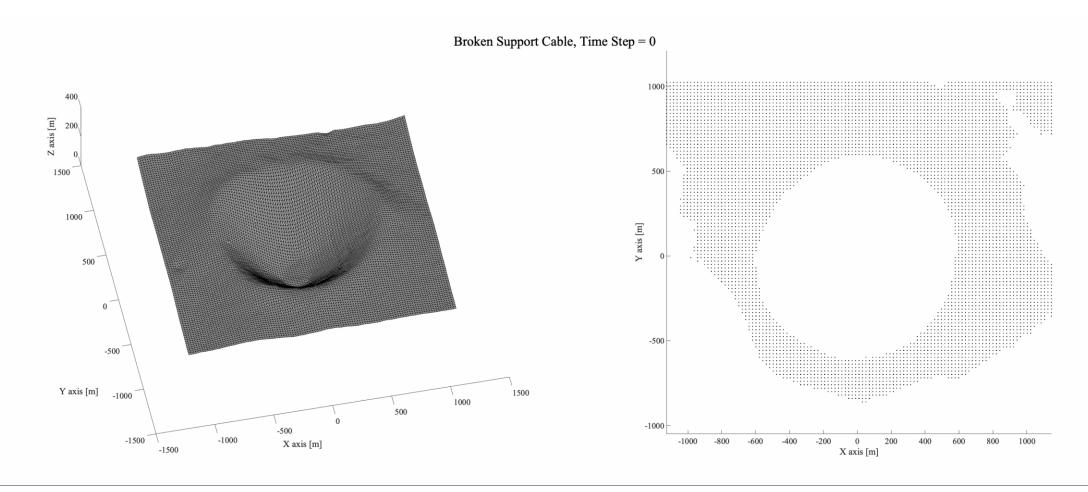
Cost disclaimer: The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.


Control of Deployment

Control of Deployment


- Active pulleys can correct for radial/angular errors in the projectile system
- Control options include:
 - Active pulley can move up/down
 - Support cable length can increase/decrease
- Design is resilient to failures
 - 1 Support cable or 1 Lift Wire failure
 - Multiple support cables failure in some scenarios


Control of Deployment: Nominal Case


Control of Deployment: 1 Support Cable Fails

Control of Deployment: 1 Lift Wire Fails

Control of Deployment: 2 Support Cables Fail

Science Pipeline

Science Goal from 2020 Astro decadal:

Understanding the cooling profile of the Universe during the Dark Ages and the role of Dark matter in the transition to the Cosmic Dawn

Science Objective:

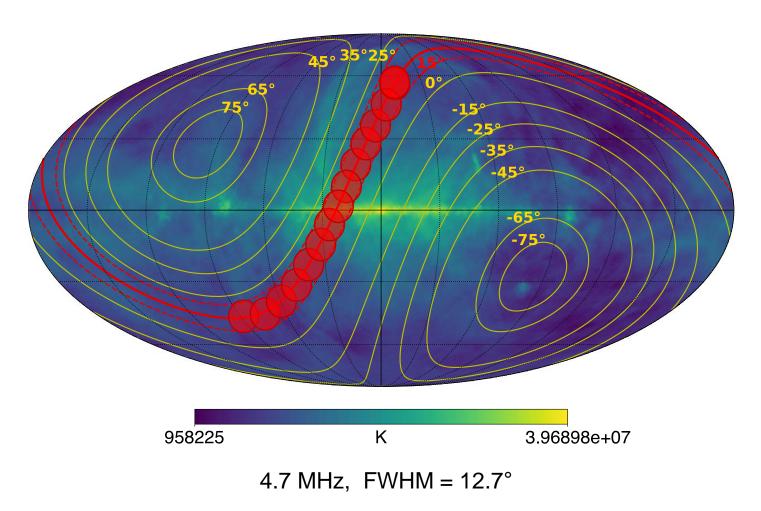
Ascertain which cosmological model can explain this cooling behavior during the Dark Ages

Science Measurement Requirements:

Measure the global spectral profile of the highly-redshifted H_I transition with:

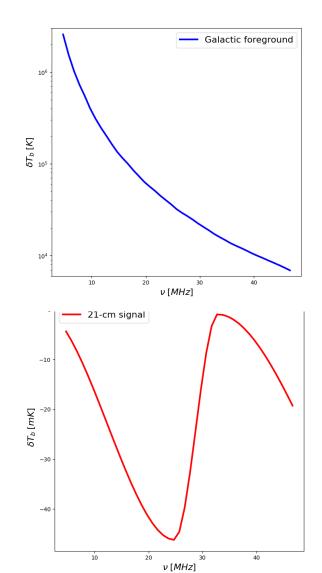
- Frequency range of 4.7-47 MHz
- Spectral resolution of 1 MHz
- Noise temperature less than 20 mK

The farside of the Moon allows to access these frequencies from a radio-quiet environment


Still need to mitigate the Galactic foreground

(up to 10⁸ stronger than 21cm signal)

J. O. Burns et al., "Dark cosmology: Investigating dark matter & exotic physics in the dark ages using the redshifted 21-cm global spectrum," arXiv

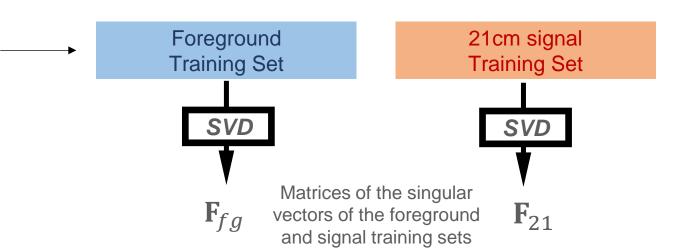

Science Pipeline – Pylinex (Drift-Scan)

The observation time of 1 lunar night is divided in multiple time bins

Tauscher K, Rapetti D, Burns JO, Switzer E. Global 21 cm signal extraction from foreground and instrumental effects. iii. Utilizing Drift-scan Time Dependence and Full Stokes Measurements. The Astrophysical Journal. 2020, DOI: 10.3847/1538-4357/ab9b2a

$$\mathbf{y} = \mathbf{y}_{fg} + \mathbf{\Psi}_{21}\mathbf{y}_{21} + \mathbf{n}$$
 Gaussian noise

Science Pipeline – Pylinex (Modeling)


Raw data vector

Contains multiple individual spectra concatenated

$$\mathbf{y} = \mathbf{y}_{f,g} + \mathbf{\Psi}_{21}\mathbf{y}_{21} + \mathbf{n}$$

Gaussian noise of covariance C

Generate multiple simulated realizations of foreground and 21-cm signal (**training sets**) to capture sky, antenna and signal uncertainty

Data model

$$M(x_{fg}, x_{21}) = F_{fg}x_{fg} + \Psi_{21}F_{21}x_{21}$$

Tauscher K, Rapetti D, Burns JO, Switzer E. Global 21 cm signal extraction from foreground and instrumental effects. iii. Utilizing Drift-scan Time Dependence and Full Stokes Measurements. The Astrophysical Journal. 2020, DOI: 10.3847/1538-4357/ab9b2a

Science Pipeline – Pylinex (Fitting)

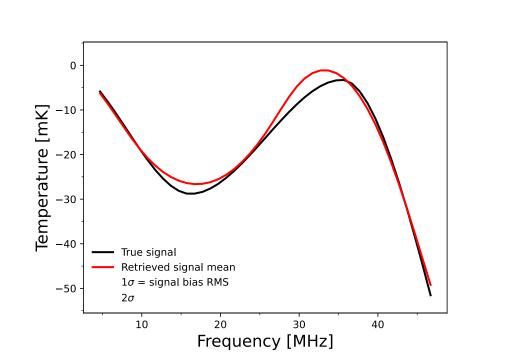
Raw data vector:

$$\mathbf{y} = \mathbf{y}_{fg} + \mathbf{\Psi}_{21}\mathbf{y}_{21} + \mathbf{n}$$

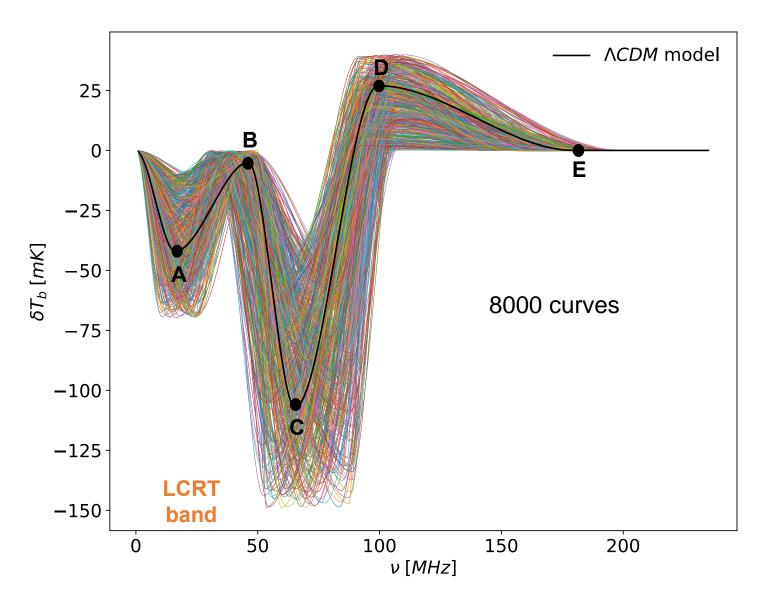
Gaussian noise of covariance C

Foreground Training Set $M(x_{fg}, x_{21}) = F_{fg}x_{fg} + \Psi_{21}F_{21}x_{21}$

Data model:


Raw data fit with MLE:

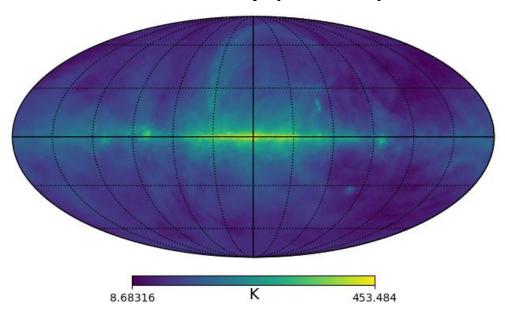
$$L(x) \propto exp\{-0.5[y - Gx]^{T}C^{-1}[y - Gx]\}$$


$$G = [F_{fg} \Psi_{21}F_{21}], x^{T} = [x_{fg}^{T}, x_{21}^{T}]$$

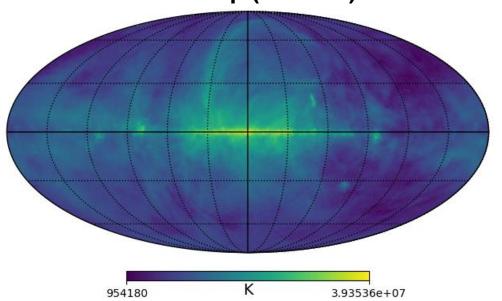
Retrieved 21-cm signal: $\gamma_{21} = F_{21} \xi_{21}$

(maximum likelihood estimation of y_{21})

Dark Ages Signal Training Set: the Turning Point Model



Turning point parameters for the $\Lambda CDM \ model$


Frequencies [MHz]	Temperature [mK]
$v_A = 16.1$	$\delta T_A = -42$
$v_B = 46.2$	$\delta T_B = -5$
$v_C = 65.3$	$\delta T_C = -107$
$v_D = 99.4$	$\delta T_D = -37$
$\nu_E = 180$	$\delta T_E = 0$

Pritchard JR, Loeb A., "Constraining the unexplored period between the dark ages and reionization with observations of the global 21 cm signal," *Physical Review D.* 2010;82(023006).

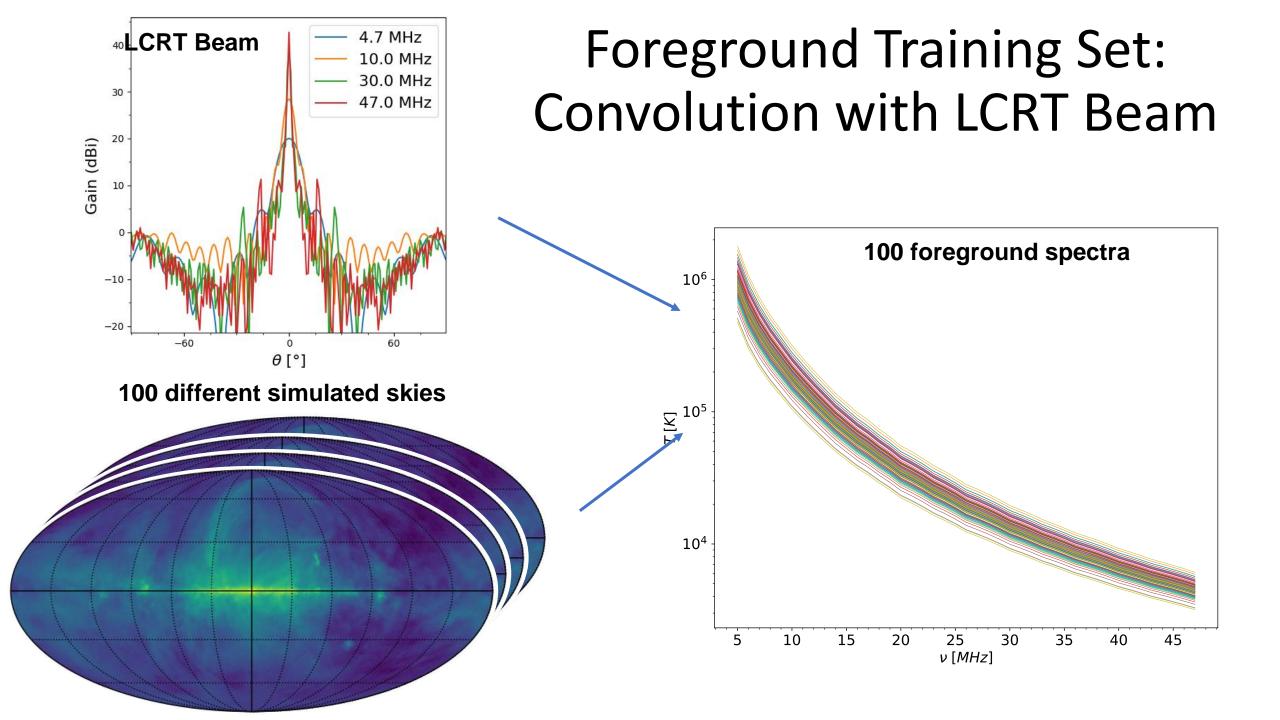
Haslam map (408 MHz)

Scaled map (4.7 MHz)

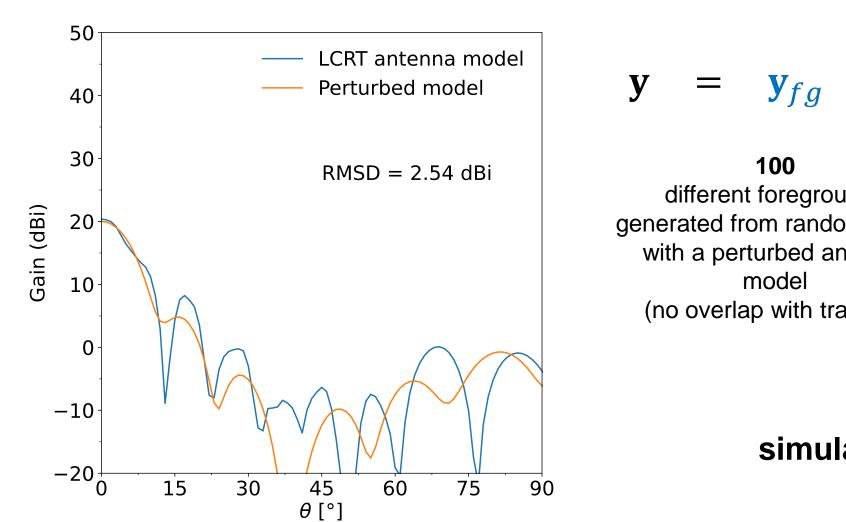
Foreground Training Set: Spectral Index Spatial Variation

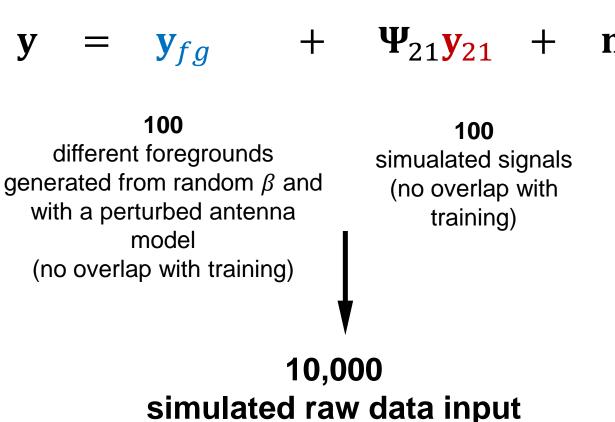
$$T_{sky}(
u, heta, \phi) = T_{map}(heta, \phi) \left(rac{
u}{
u_o}
ight)^{eta(heta, \phi,
u)}$$

Multiple realizations of the foreground are sampled from a random spatial distribution of the spectral index β

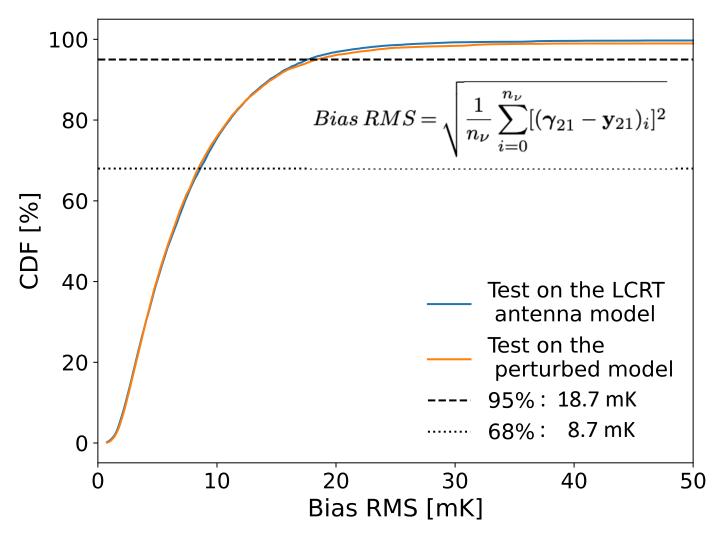

$$\beta(\theta) = O + M \exp\left\{-\frac{(\theta - \pi/2)^2}{2\sigma^2}\right\}$$

 θ galactic co-latitude

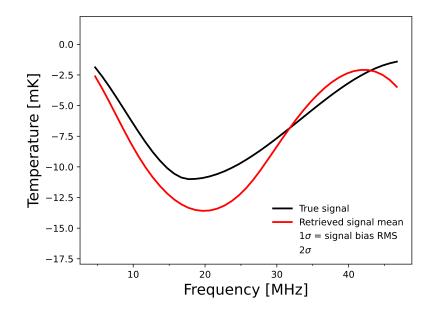

$$0 = \beta_{pole}$$
, $M = \beta_{plane} - \beta_{pole}$, $\sigma = 5^{\circ}$

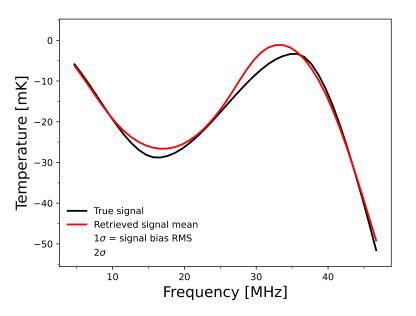

Term	Mean	Std dev	Distribution Type
0	-2.59	0.07	Gaussian
M	0.13	0.1	Truncated Gaussian ($M_{min} = 0$, $M_{max} = 0.2$)

Hibbard JJ et al.,"Modeling the Galactic ForegroundandBeam Chromaticity for Global 21cm Cosmology, "The Astrophysical Journal.2020; 905(2):113

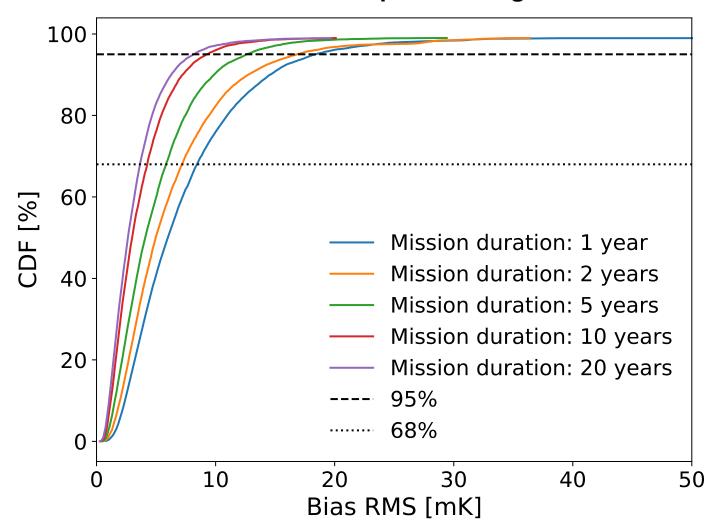


Testing Framework: Perturbed Antenna Model

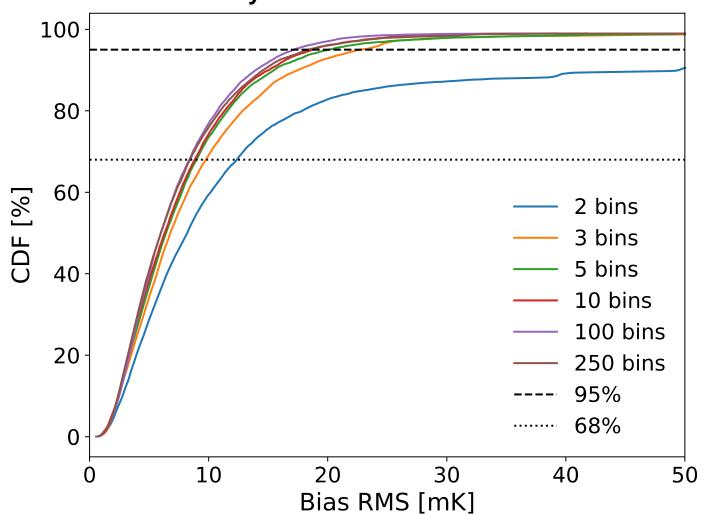



Results

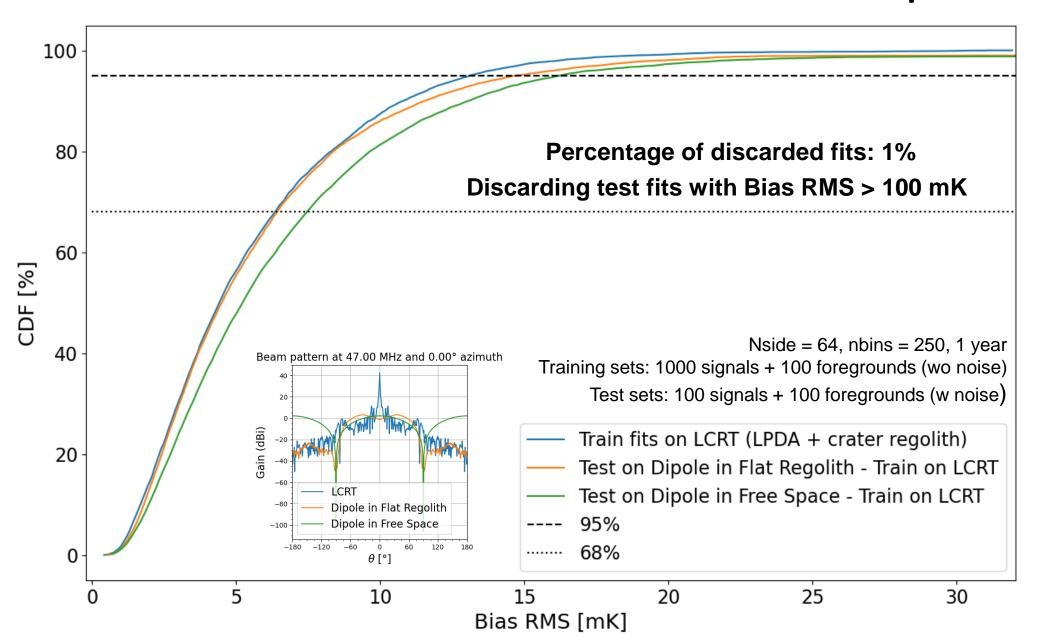
1 year of mission duration 250 time bins per lunar night

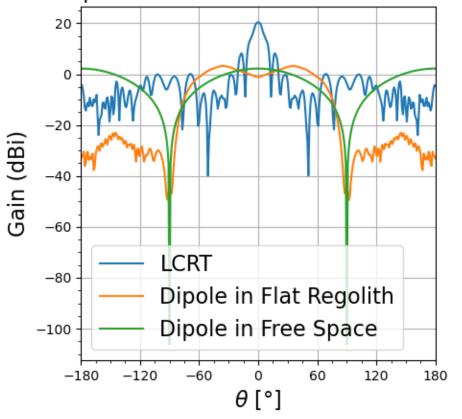

Examples of retrieved signal for different input, with confidence intervals

Effect of Mission Duration

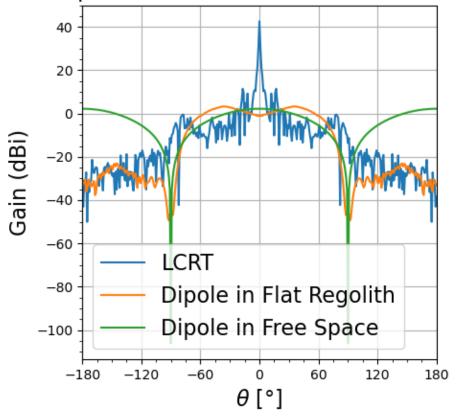

250 time bins per lunar night

Mission duration	68%	95%
(years)	(mK)	(mK)
1	8.4	18.4
2	7.2	16.8
5	5.9	12.6
10	4.3	9.3
20	3.7	8.2

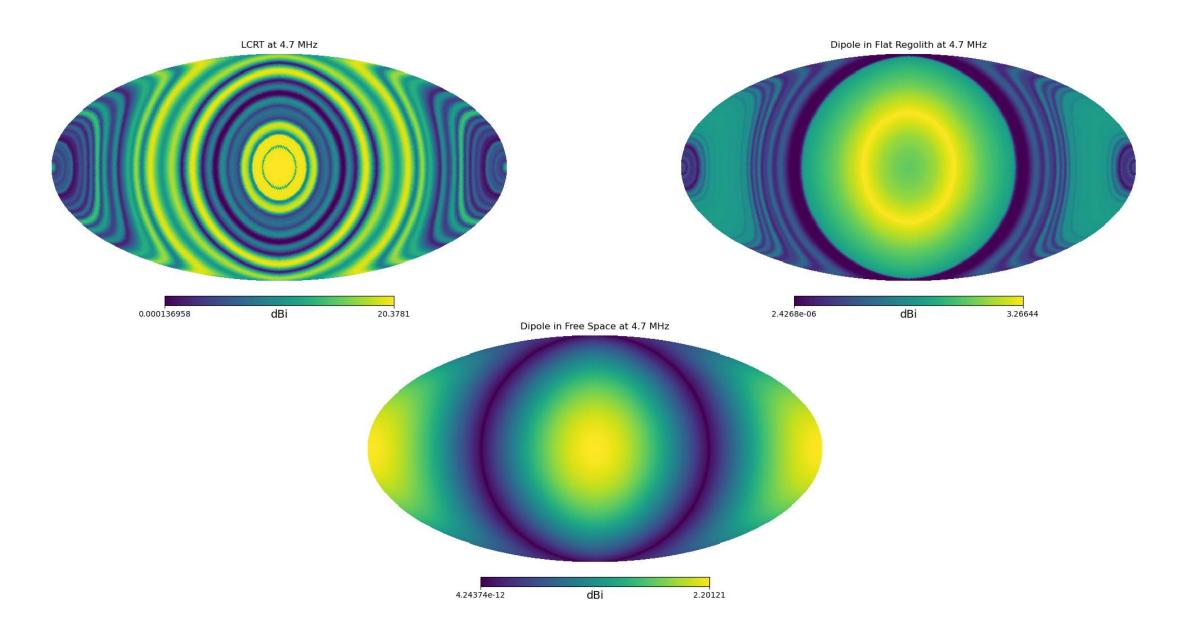

Effect of Number of Time Bins

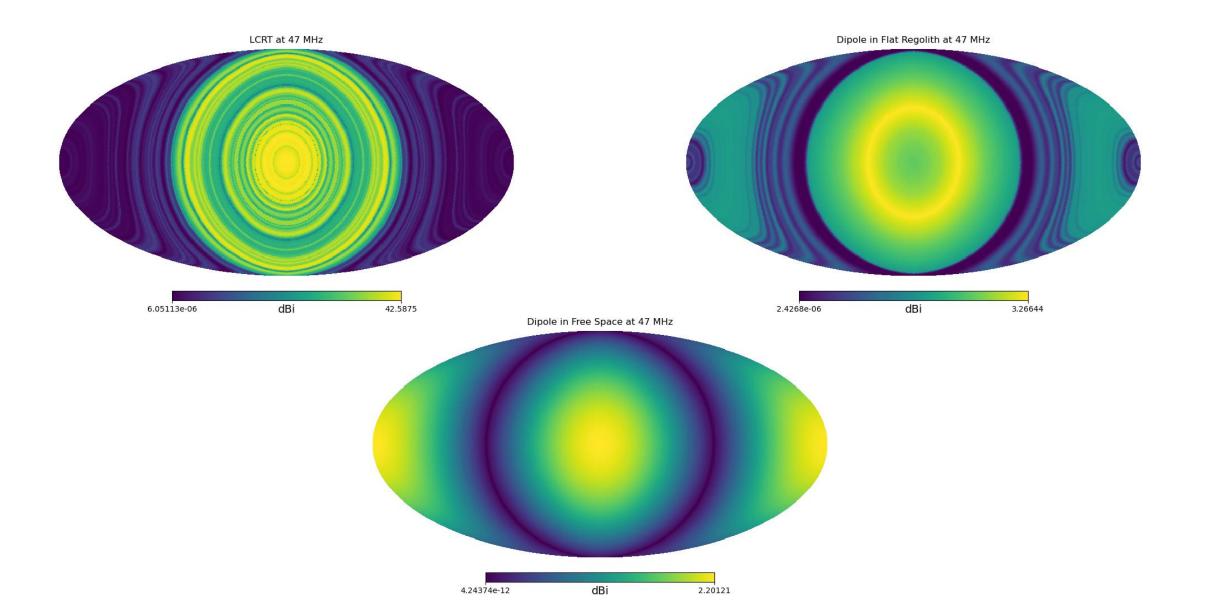

Bins	68%	95%
	(mK)	(mK)
2	12.4	/
3	9.8	22.7
5	9.0	20.1
10	8.8	18.8
100	8.4	17.2
250	8.4	18.4

Train on LCRT Antenna – Test on Dipoles



Radiation Patterns


Beam pattern at 5.00 MHz and 0.00° azimuth


Beam pattern at 47.00 MHz and 0.00° azimuth

Radiation Patterns – 2D maps at 4.7 MHz

Radiation Patterns – 2D maps at 47 MHz

