

Types of evidence for diet and chronic disease, session 2

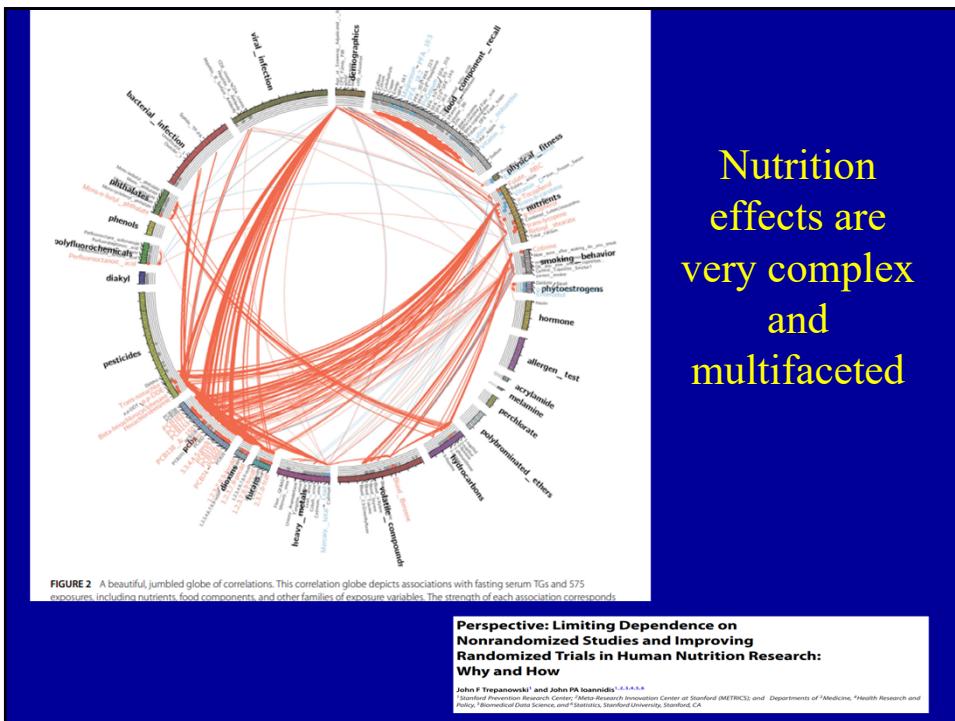
Webinar, July 10, 2025

John P.A. Ioannidis, MD, DSc

Professor of Medicine, of Epidemiology and Population Health, and (by courtesy) of Biomedical Data Science
Co-Director, Meta-Research Innovation Center at Stanford (METRICS)
Stanford University

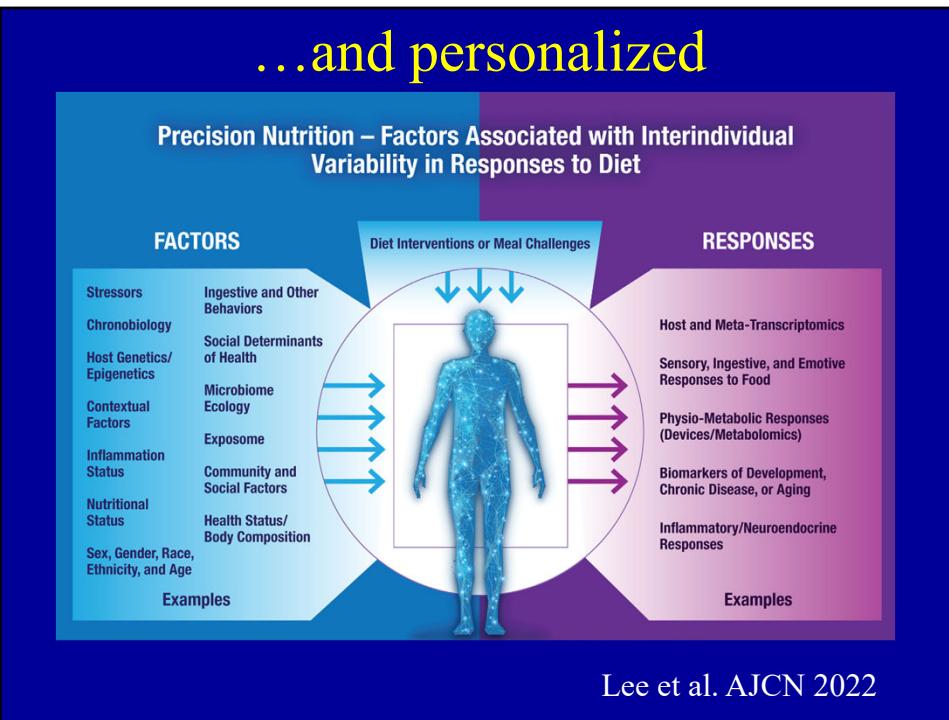
1

Disclosures


- No conflicts of interest

2

Nutri* OR diet OR food


- 2,711,275 papers indexed in PubMed as of Jul 8, 2025
- This includes 34,829 systematic reviews
- While most studies are observational non-randomized, 81,357 papers are classified as randomized controlled trials

3

Nutrition effects are very complex and multifaceted

...and personalized

5

Still most studies look at epidemiological averages

VIEWPOINT

The Challenge of Reforming Nutritional Epidemiologic Research

John P. A. Ioannidis, MD, DSc
Stanford Prevention Research Center and Meta-Health Innovation Center at Stanford (METRICS), Stanford University, Stanford, California.

Some nutrition scientists and much of the public often consider epidemiologic associations of nutritional factors to represent causal effects that can inform public health policy and guidelines. However, the emerging picture of nutritional epidemiology is difficult to reconcile with good scientific principles. The field needs radical reform.

In recent updated meta-analyses of prospective cohort studies, almost all foods revealed statistically significant associations with mortality risk.¹ Substantial deficiencies of key nutrients (eg, vitamins), extreme over-consumption of food, and obesity from excessive calories may indeed increase mortality risk. However, can small intake differences of specific nutrients, foods, or diet patterns with similar calories causally, markedly, and almost ubiquitously affect survival?

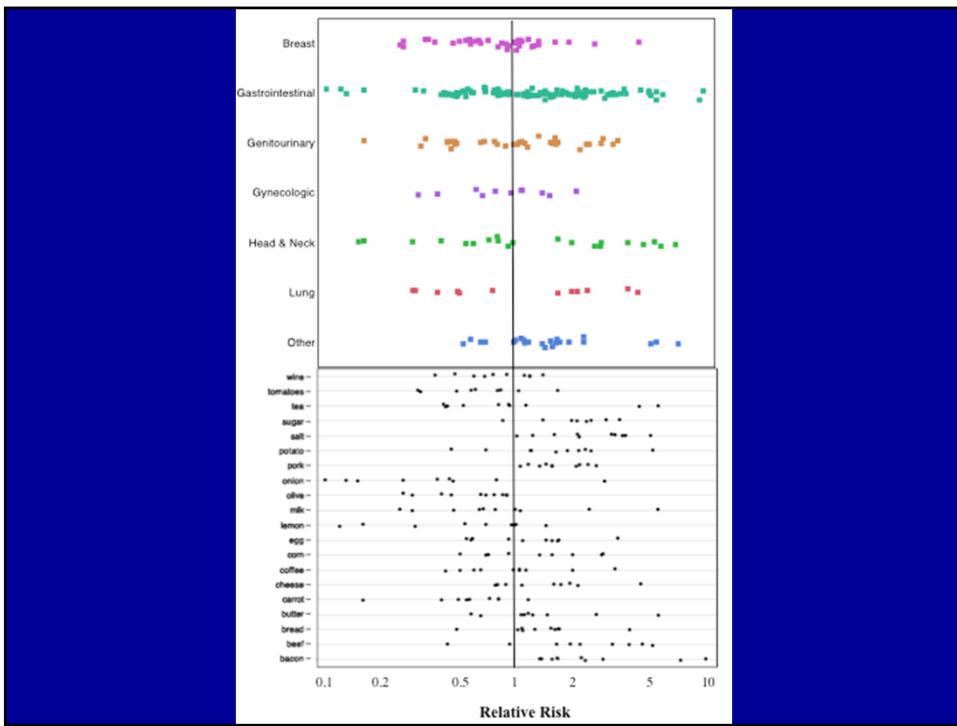
Assuming the meta-analyzed evidence from cohort studies represents life span-long causal associations, for a baseline life expectancy of 80 years, nonexperts pre-

lyze in very different ways.⁴ Consequently, meta-analyses become weighted averages of expert opinions. In an inverse sequence, instead of carefully conducted primary studies informing guidelines, expert-driven guidelines shaped by advocates dictate what primary studies should report. Not surprisingly, an independent assessment by the National Academies of Sciences, Engineering, and Medicine of the national dietary guidelines suggested major redesign of the development process for these guidelines: improving transparency, promoting diversity of expertise and experience, supporting a more deliberative process, managing biases and conflicts, and adopting state-of-the-art processes.⁵

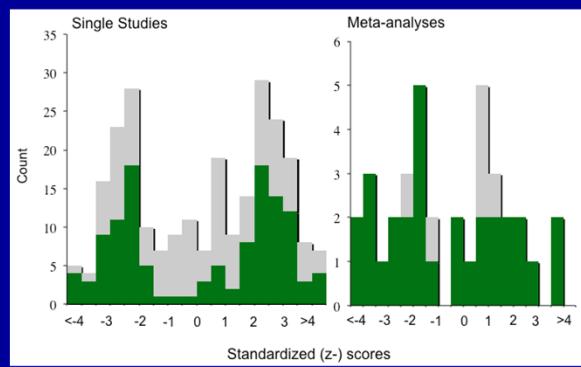
Proponents of the status quo may maintain that the true associations are even larger than what are reported because of attenuation from nondifferential misclassification. Indeed, self-reported data have error,⁶ but there is no guarantee it is nondifferential. Nevertheless, if error is nondifferential and estimated effects are

6

Diet causes cancer


- Open a popular cookbook
- Randomly check 50 ingredients
- How many of those are associated with significantly increased or significantly decreased cancer risk in the scientific literature?

7


Associated with cancer risk

- veal, salt, pepper spice, flour, egg, bread, pork, butter, tomato, lemon, duck, onion, celery, carrot, parsley, mace, sherry, olive, mushroom, tripe, milk, cheese, coffee, bacon, sugar, lobster, potato, beef, lamb, mustard, nuts, wine, peas, corn, cinnamon, cayenne, orange, tea, rum, raisin

8

9

Schoenfeld and Ioannidis, AJCN 2013

10

Death by food: it can all kill you

FOOD GROUPS AND MORTALITY

1469

TABLE 1

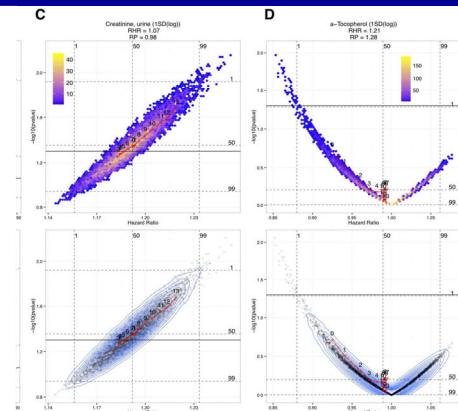
Relative risks from nonlinear dose-response analysis of 12 predefined food groups and all-cause mortality according to servings per day¹

Associations by food group	Servings per day						
	0	1	2	3	4	5	6
Inverse association							
Whole grains (30 g/d)	1.00	0.91 (0.89, 0.92)	0.84 (0.82, 0.86)	0.79 (0.76, 0.83)	NA	NA	NA
Vegetables (80 g/d)	1.00	0.94 (0.93, 0.96)	0.91 (0.89, 0.93)	0.89 (0.87, 0.92)	0.89 (0.87, 0.91)	0.89 (0.87, 0.91)	0.89 (0.86, 0.92)
Fruit (80 g/d)	1.00	0.94 (0.93, 0.96)	0.91 (0.89, 0.93)	0.90 (0.88, 0.93)	0.91 (0.88, 0.93)	0.92 (0.89, 0.94)	0.92 (0.89, 0.95)
Nuts (28 g/d)	1.00	0.85 (0.82, 0.89)	NA	NA	NA	NA	NA
Legumes (100 g/d)	1.00	0.90 (0.85, 0.96)	NA	NA	NA	NA	NA
Fish (100 g/d)	1.00	0.93 (0.90, 0.96)	0.90 (0.84, 0.96)	NA	NA	NA	NA
Positive association							
Eggs (55 g/d)	1.00	1.07 (1.01, 1.15)	NA	NA	NA	NA	NA
Red meat (85 g/d)	1.00	1.16 (1.14, 1.18)	1.35 (1.32, 1.38)	NA	NA	NA	NA
Processed meat (30 g/d)	1.00	1.12 (1.10, 1.14)	1.20 (1.17, 1.23)	1.28 (1.23, 1.32)	1.35 (1.28, 1.41)	NA	NA
Sugar-sweetened beverages (250 mL/d)	1.00	1.07 (1.01, 1.14)	NA	NA	NA	NA	NA
Inverse and positive association							
Dairy (200 g/d)	1.00	0.97 (0.95, 0.99)	0.99 (0.97, 1.01)	1.04 (1.01, 1.07)	1.11 (1.05, 1.17)	1.16 (1.08, 1.23)	NA
No association							
Refined grains (30 g/d)	1.00	0.96 (0.92, 1.01)	0.96 (0.90, 1.02)	0.97 (0.91, 1.05)	1.00 (0.92, 1.08)	1.03 (0.92, 1.16)	NA

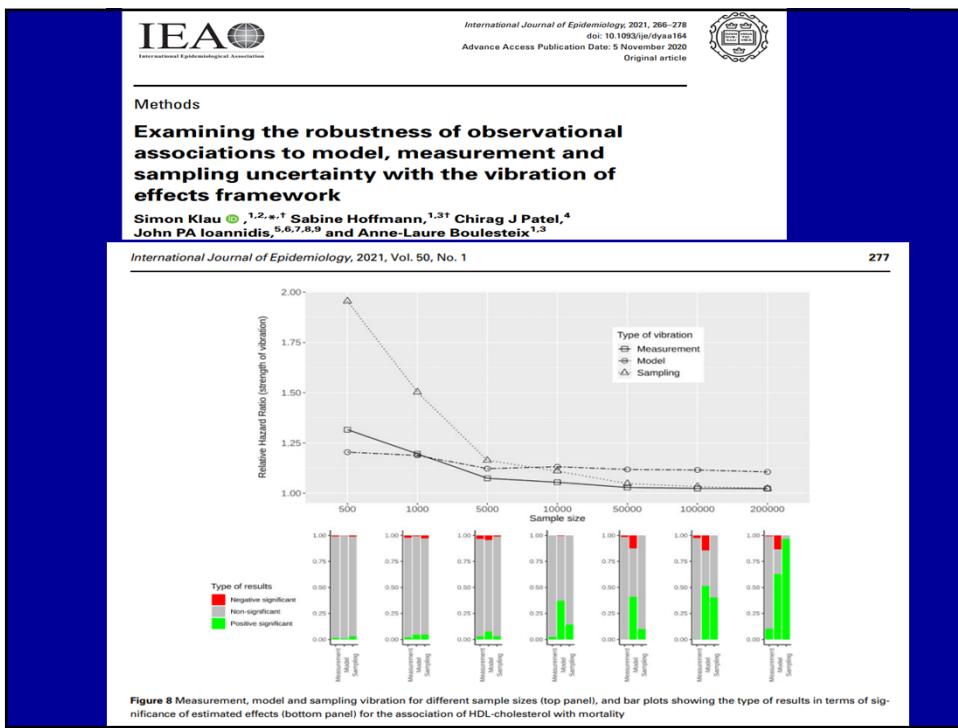
¹ Values are risk ratios (95% CIs). NA, not applicable.

11

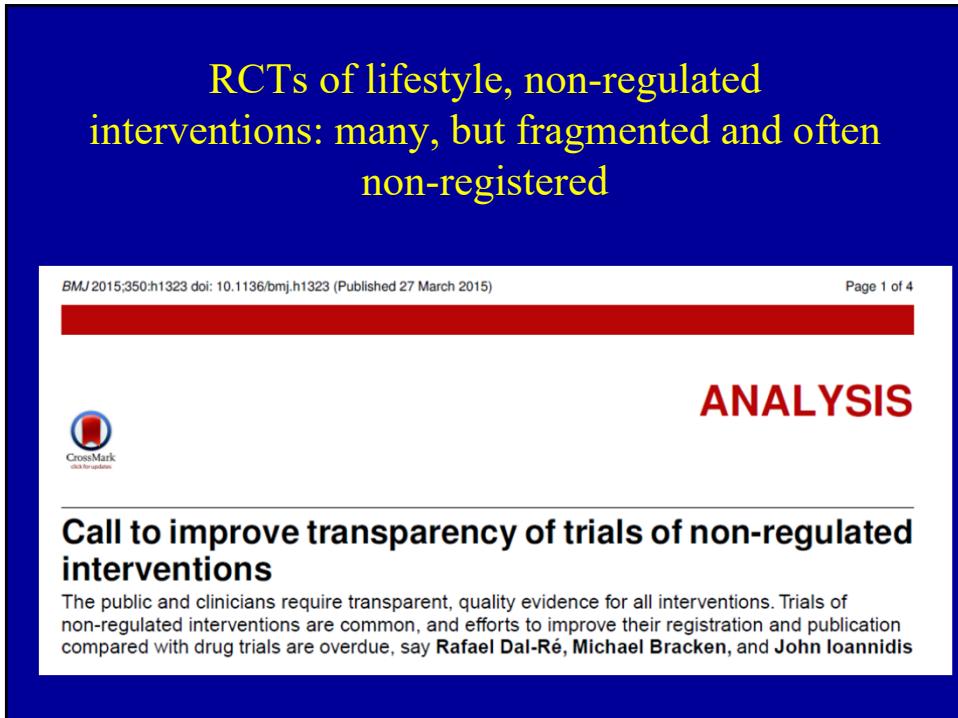
If you eat
that many
hazelnuts
each day,
your death
risk
decreases
by 15%
(?!)


12

If you drink three cups of coffee
every day your death risk
decreases by 15% (?!)


13

Almost any result can be obtained: Vibration
of effects and the Janus phenomenon



Patel, Burford, Ioannidis. JCE 2015; Patel and Ioannidis, JAMA 2015

14

15

16

Long-term randomized trials in nutrition are doable, and indispensable

TABLE 1 ATBC study (enrolled in 1985–1988): initial and postintervention-period results¹

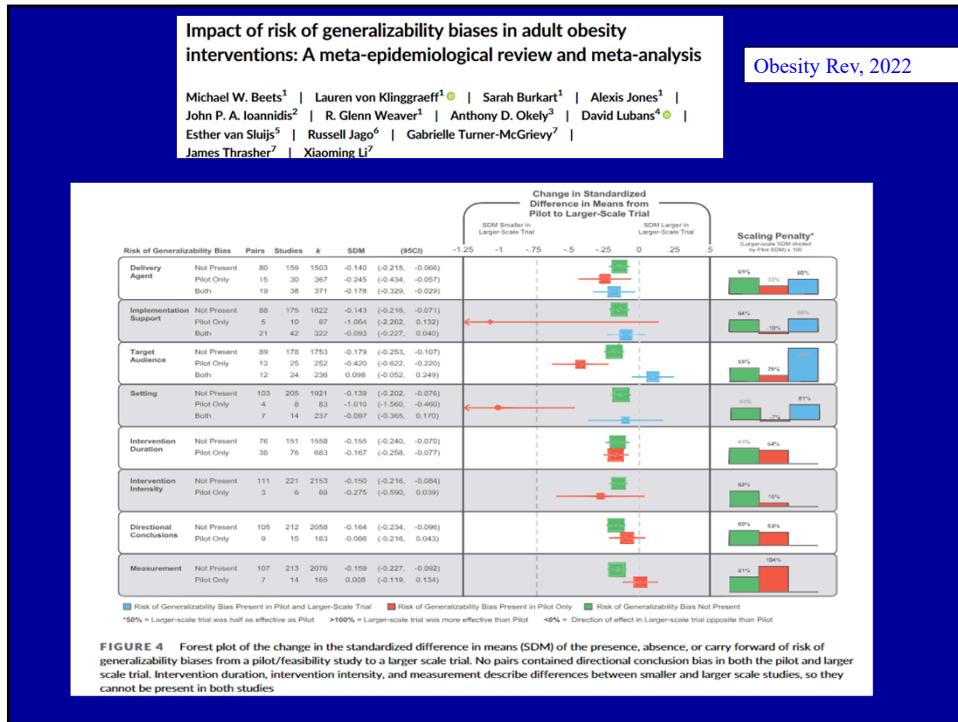
	β -Carotene		α -Tocopherol	
	All deaths	Lung cancer	All deaths	Prostate cancer
Intervention to April 1993 (72)	1.08 (1.01, 1.16)	1.18 (1.03, 1.36)	1.02 (0.95, 1.09)	0.68 (0.53, 0.88)
Postintervention				
To April 1999 (73)	—	1.06 (0.94, 1.20)	—	0.88 (0.76, 1.03)
To April 2001 (73)	1.07 (1.02, 1.12)	—	1.01 (0.96, 1.05)	—
To December 2009 (74)	1.02 (0.99, 1.05)	1.04 (0.96, 1.01)	1.02 (0.98, 1.05)	0.97 (0.89, 1.05)

¹Values are relative risk (95% CIs). ATBC, Alpha-Tocopherol, Beta-Carotene Cancer Prevention.

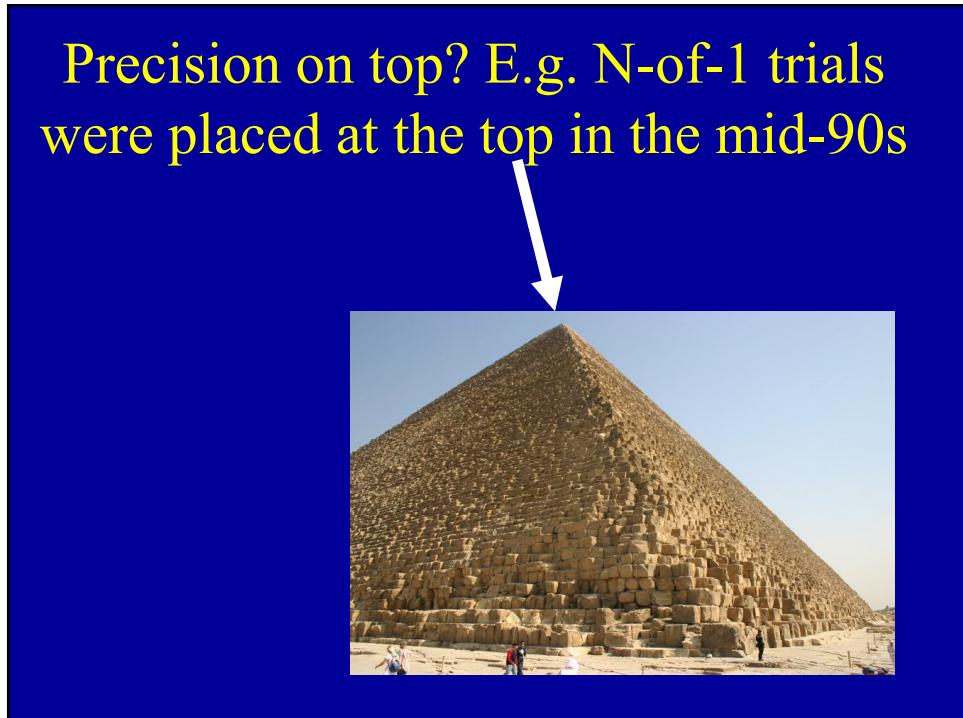
17

Pilot trials need to be assessed for generalizability biases

Identification and evaluation of risk of generalizability biases in pilot versus efficacy/effectiveness trials: a systematic review and meta-analysis



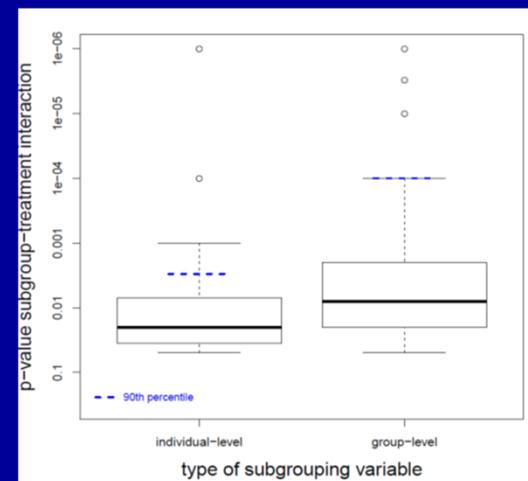
Michael W. Beets¹ , R. Glenn Weaver¹, John P. A. Ioannidis², Marco Geraci¹, Keith Brazendale¹, Lindsay Decker¹, Anthony D. Okely¹, David Lubans⁴, Esther van Sluijs⁵, Russell Jago⁵, Gabrielle Turner-McGrievy¹, James Thrasher¹, Xiaming Li¹ and Andrew J. Milat^{7,8}


Results: A total of 39 pilot and larger trial pairs were identified. The frequency of the biases varied: delivery agent bias (19/39 pairs), duration bias (15/39), implementation support bias (13/39), outcome bias (6/39), measurement bias (4/39), directional conclusion bias (3/39), target audience bias (3/39), intervention intensity bias (1/39), and setting bias (0/39). In meta-analyses, delivery agent, implementation support, duration, and measurement bias were associated with an attenuation of the effect size of -0.325 (95CI -0.556 to -0.094), -0.346 (-0.640 to -0.052), -0.342 (-0.498 to -0.187), and -0.360 (-0.631 to -0.089), respectively.

Conclusions: Pre-emptive avoidance of RGBs during the initial testing of an intervention may diminish the voltage drop between pilot and larger efficacy/effectiveness trials and enhance the odds of successful translation.

18

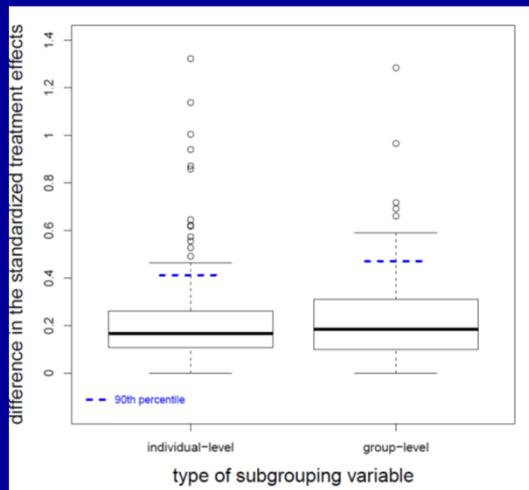
19


20

Why were N-of-1 trials largely abandoned 30 years ago?

- Not good if the disease/condition does not have a steady natural history
- Not good if there is carry over effect
- Not good if there are priming effects and if effects depend on previous choices
- Not good if the disease has a fatal outcome and a relatively short course
- Not good if there is poor/unpredictable compliance/adherence/tolerability

21


Subgroup differences in large-scale MIPDs: few and with low support

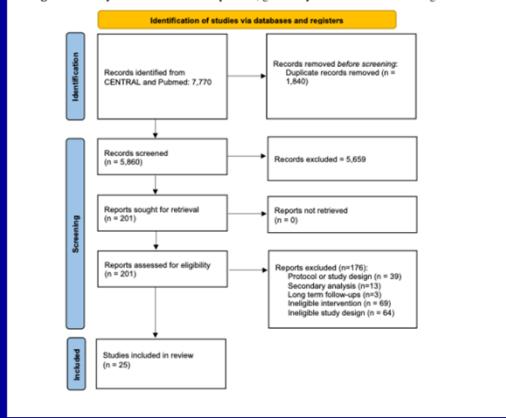
Schuit et al, Int J Epidemiol 2018

22

Treatment effect modifications for individual and group level subgrouping variables: typically small

23

Biomarker-driven precision trial designs


	Enrichment	Randomize-all	Adaptive design	Umbrella	Basket
Histology	dependent	dependent	dependent	dependent	independent
Number of targeted therapies	1	1	≥ 1	> 1	≥ 1
Number of biomarkers	1	1	≥ 1	> 1	≥ 1
Type of biomarkers	Bm+	Bm+ and Bm-	Bm+ and Bm-	Bm+ if exploratory Bm+ and Bm- if confirmatory	Usually Bm+
Biomarker credentials (a priori knowledge)	very strong	+/-	+/-	strong	very strong
Biomarker assay	single, locally	single, locally	single, locally	multiplex, centralized	single, locally
Provides information on the Biomarker-treatment benefit association (is the biomarker predictive?)	-	+/-	+/-	+	-
Number of patients required to screen	Prevalence-dependent	Prevalence-dependent	Prevalence-dependent	Prevalence-dependent	Prevalence-dependent
Sufficiently large sample size (depends on the rarity of the mutation)*	+	++	+/-	+++	++
Overlap of patients	-	+/-	+/-	+	-
Statistical complexity	+	+	+++	++	++
Tradeoff between power versus sample size	-	+	++	+++	+++
Subgroup analyses - multiplicity	-	-	+++	++	+++
Type I error problems	+	+	++	++	+++
Flexibility†	-	-	+++	+	+
Time efficiency and cost savings	--	--	+	++	++

Janiaud, Sergiou, Ioannidis, Cancer Treatment Reviews 2019

24

Precision genetics? A systematic review of 25 RCTs on polygenic risk scores

Figure 1. Study search and selection process, guided by the PRISMA Flow Diagram.

25

Conclusions of the 25 RCTs

- 13 had favorable claims
- 5 claimed further research is warranted
- 7 stated no significant differences were found

26

All meta-analyses show null benefits

Outcome	Measure	N° of studies (intervention; control)	value	95%CI	I ²
Total cholesterol	mean difference	2 (391; 391)	-2.01	[-8.27; 4.26]	0%
HDL cholesterol	mean difference	3 (411; 437)	-0.21	[-2.65; 2.23]	1.7%
LDL cholesterol	mean difference	4 (514; 537)	-3.64	[-7.88; 0.60]	0%
Sistolic Blood Pressure	mean difference	3 (247; 276)	-1.26	[-4.44; 1.92]	10.1%
Diastolic Blood Pressure	mean difference	3 (247; 276)	-1.88	[-4.17; 0.42]	0%
Weight	mean difference	4 (482; 443)	-0.33	[-0.87; 0.20]	0%
BMI	mean difference	3 (319; 271)	-0.12	[-0.64; 0.39]	0%
Physical activity	SDM	4 (508; 511)	-0.01	[-0.13; 0.11]	0%
Anxiety	SDM	5 (702; 671)	-0.02	[-0.13; 0.08]	0%
Perceived risk	SDM	2 (379; 379)	-0.10	[-0.40; 0.19]	77.2%
Worry	SDM	3 (718; 733)	-0.06	[-0.23; 0.10]	42.4%
Peak sun exposure	SDM	2 (533; 548)	0.02	[-0.10; 0.14]	0%
Intentional tanning	SDM	4 (1109; 1120)	-0.03	[-0.11; 0.06]	0%
Total Sun exposure	SDM	3 (1091; 1101)	0.00	[-0.09; 0.08]	0%
Sun Protection	SDM	2 (533; 548)	0.04	[-0.08; 0.16]	0%
Incidence of the disease	relative risk	3 (467; 418)	0.945	[0.320; 2.79]	68.3%
Screening attendance	relative risk	4 (990; 748)	1.115	[0.770; 1.61]	25.5%

27

Nutrition science would benefit from reproducible practices

A manifesto for reproducible science

Marcus R. Munafò^{1,2*}, Brian A. Nosek^{3,4}, Dorothy V. M. Bishop⁵, Katherine S. Button⁶, Christopher D. Chambers⁷, Nathalie Percie du Sert⁸, Uri Simonsohn⁹, Eric-Jan Wagenmakers¹⁰, Jennifer J. Ware¹¹ and John P. A. Ioannidis^{12,13,14}

Improving the reliability and efficiency of scientific research will increase the credibility of the published scientific literature and accelerate discovery. Here we argue for the adoption of measures to optimize key elements of the scientific process: methods, reporting and dissemination, reproducibility, evaluation and incentives. There is some evidence from both simulations and empirical studies supporting the likely effectiveness of these measures, but their broad adoption by researchers, institutions, funders and journals will require iterative evaluation and improvement. We discuss the goals of these measures, and how they can be implemented, in the hope that this will facilitate action toward improving the transparency, reproducibility and efficiency of scientific research.

28

Published by Oxford University Press on behalf of the International Epidemiological Association © The Author 2011; all rights reserved. Advance Access publication 6 July 2011 *International Journal of Epidemiology* 2011;40:1292–1307 doi:10.1093/ije/dyr099

Learning to live with small/tiny effects

Risk factors and interventions with statistically significant tiny effects

George CM Siontis¹ and John PA Ioannidis^{1,2*}

¹Clinical Trials and Evidence-Based Medicine Unit and the Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece and ²Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, USA

*Corresponding author. Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. E-mail: jioannid@stanford.edu

Accepted 19 May 2011

Background Large studies may identify postulated risk factors and interventions with very small effect sizes. We aimed to assess empirically a large number of statistically significant relative risks (RRs) of tiny magnitude and their interpretation by investigators.

Methods RRs in the range between 0.95 and 1.05 were identified in abstracts of articles of cohort studies; articles published in *NEJM*, *JAMA* or *Lancet*; and Cochrane reviews. For each eligible tiny effect and the respective study, we recorded information on study design, participants, risk factor/intervention, outcome, effect estimates, *P*-values and interpretation by study investigators. We also calculated the probability that each effect lies outside specific intervals around the null (RR interval 0.97–1.03, 0.95–1.05, 0.90–1.10).

Results We evaluated 51 eligible tiny effects (median sample size 112 786 for risk factors and 36 021 for interventions). Most (37/51) appeared in articles published in 2006–10. The effects pertained to nutritional ($n=19$), genetic and other biomarkers ($n=8$), correlates of health behaviours ($n=10$), diseases ($n=6$), and clinical or public health importance and mostly referred to major clinical outcomes. A total of 15 of the 51 effects were >80% likely to lie outside the RR interval 0.97–1.03, but only 8 were >40% likely to lie outside the RR interval 0.95–1.05 and none was >1.7% likely to lie outside the RR interval 0.90–1.10. The authors discussed at least one concern for 23 effects (small magnitude $n=19$, residual confounding $n=11$, selection bias $n=1$). No concerns were expressed for 28 effects.

Conclusions Statistically significant tiny effects for risk factors and interventions of clinical or public health importance become more common in the literature. Cautious interpretation is warranted, since most of these effects could be eliminated with even minimal biases and their importance is uncertain.

29

Concluding comments

- Nutrition science has made major contributions for understanding and treating clinical syndromes and extreme situations (e.g. deficiencies and toxic doses)
- Working in the range of subtle chronic disease associations has been notoriously frustrating and millions of papers have contributed mostly confusion
- A new paradigm is needed combining relevant randomized trials, reproducible research practices and rigorous exploration of precision options.

30