Maternal and Child Health Outcomes Associated with Gestational Weight Gain by Body Mass Index: A Scoping Review

Prepared for the Committee on Exploring New Evidence on Weight Gain During Pregnancy and Perinatal Outcomes

Jennifer K. Stephenson,¹ Alice Vorosmarti,² Lisa Bodnar,³ Ann L. Yaktine,⁴ Editors

INTRODUCTION

Updated guidelines on weight gain during pregnancy were last published in 2009 by the Institute of Medicine (IOM, 2009). At that time, there was insufficient evidence to assess the effect of pregnancy weight gain on health outcomes among women in higher classes of obesity or those who were underweight. Additionally, the stratification of obesity into three classes: 1 (BMI = $30-34.9 \text{ kg/m}^2$), 2 (BMI = $35-39.9 \text{ kg/m}^2$), and 3 (BMI $\geq 40 \text{ kg/m}^2$) in the World Health Organization BMI classification system⁵ has become more widely adopted, warranting an

¹ M.S.P.H., Research Associate, National Academies of Sciences, Engineering, and Medicine.

² M.S.P.H., Associate Program Officer, National Academies of Sciences, Engineering, and Medicine.

³ Ph.D., R.D., Professor of Epidemiology, University of Pittsburgh School of Public Health.

⁴ Ph.D., R.D., Director, Food and Nutrition Board, National Academies of Sciences, Engineering, and Medicine.

⁵ Previously, obesity was primarily classified as BMI \geq 30 kg/m².

updated review. To address this, the National Academies of Sciences, Engineering, and Medicine (the National Academies) was asked by the U.S. Department of Agriculture (USDA) and the Endocrine Society to conduct a scoping review⁶ to examine the state of the evidence on health outcomes for both mother and child associated with gestational weight gain and stratified across prepregnancy body mass index (BMI) categories.

Thus, this scoping review was undertaken to provide an updated review of the amount of available evidence on health outcomes related to weight gain during pregnancy among those in higher BMI categories as well as underweight, since the release of the 2009 guidelines. The goal of this review was to focus on the following research question: What is the current amount of available evidence on maternal and child health outcomes associated with gestational weight gain stratified by prepregnancy or early pregnancy BMI?

APPROACH AND METHODS

Eligibility Criteria

The inclusion criteria for eligible studies were determined through discussions between the National Academies staff, the planning committee consultant (Lisa Bodnar), and the planning committee chair (Kathleen Rasmussen). These criteria are presented using the Population, Intervention/Exposure, Comparator, Outcome, and Study design (PICOS) framework. The search protocol was limited to primary articles published in English, in peer-reviewed journals between January 2008 and March 2025. The cutoff year of 2008 was used to limit the abundance of articles in the search, while ensuring that articles that were published in the year prior to the 2009 IOM guidelines were captured.

Table A-1 shows the eligibility criteria. The scoping review was limited to studies of gestational weight gain in adult women with a self-reported, measured, or electronic health record for pre-pregnancy or early pregnancy (first trimester) BMI outside of the normal BMI range (18.5–24.9 kg/m²). Some studies were not clear on how weight was reported at the early pregnancy/pre-pregnancy timepoint or did not specify the mode of collection. Similarly, there was high variability in how weight (used to derive BMI values) was collected. Studies were required to have stratified the association between gestational weight gain and adverse outcomes by BMI classification. Articles that combined women with overweight or obesity in one group were excluded because obesity compared to overweight has different associations between pregnancy weight gain and adverse outcomes. However, studies that did not stratify by obesity class or studies that did stratify by classes 1, 2, and 3 were included. No restrictions were made on the health status of the study participants. All major maternal and child outcomes were included and later stratified by life course category. Only studies that categorized BMI using WHO cut points were included. For population sample size, cutoffs highlight the need for precise estimates of association, underscoring that future guidelines should be based on robust sample sizes. Studies of individuals who conceived via in vitro fertilization or other artificial fertilization

2

⁶ This scoping review was conducted in conjunction with the planning of the National Academies workshop "Prepregnancy BMI and Gestational Weight Gain: New Evidence, Emerging Innovations, and Policy Implications." The scoping review will be presented at this workshop by Lisa Bodnar, who serves as consultant to the workshop planning committee.

methods were excluded because weight gain patterns in these populations differ from the general pregnant population.

TABLE A-1 Eligibility Criteria for Scoping Review on Maternal and Child Health Outcomes Associated with Gestational Weight Gain by Body Mass Index

Category	Inclusion Criteria	Exclusion Criteria
Study participants	Women (age >18 years) with a preconception/prepregnancy (including early pregnancy) BMI classified as underweight (< 18.5 kg/m²), overweight (25.0–29.9 kg/m²), Class 1 obesity (30.00–	Studies that only look at women with preconception/prepregnancy (including early pregnancy) BMI classified as normal (18.5–24.9 kg/m²)
	34.99 kg/m²), Class 2 obesity (35.00–39.99 kg/m²), or Class 3 obesity (≥ 40.00 kg/m²); neonates (0–28 days), infants (0–12 months), children (1–18 years)	Studies that did not collect or use gestational age for analyses for preeclampsia and GDM (among other outcomes)
	Singleton pregnancies	Studies with in vitro or artificial fertilization
		Children who have reached adulthood
		Teen pregnancies
		Multiple pregnancies
Health status of study participants	Any health status	N/A
Sample Size	Cohort studies:	Cohort studies:
	Individual BMI classes (i.e., underweight, Class 1, 2, 3): $n \ge 300$	Individual BMI classes (i.e., underweight, Class 1, 2, 3): $n < 300$
	Obese (not stratified by class): $n \ge 500$	Obese (not stratified by class): $n < 500$
	Obese combined with overweight: $n \ge 500$	Obese combined with overweight: $n < 500$
	Overweight: $n \ge 500$	Overweight: <i>n</i> < 500
	Normal: $n \ge 500$	Normal: <i>n</i> < 500
	Case–control studies: cases: $n \ge 50$; controls can be any size	Case—control studies: cases: $n < 50$; controls can be any size
Confounders	Study adjusted for at least one confounder	Study did not adjust for at least one confounder
Interventions/ exposures	Gestational weight gain with associations stratified by prepregnancy/early pregnancy BMI	Gestational weight gain with associations, not stratified by BMI
		BMI treated only as a confounder

Comparators	N/A	N/A
Outcomes	Maternal and child health outcomes, including neonatal outcomes, birth, maternal postpartum outcomes, maternal intrapartum outcomes, pregnancy or antepartum complications, maternal health, pregnancy health, fetal outcomes, infant outcomes, neonatal health, childhood outcomes	N/A
Study design	Randomized controlled trials	Editorials
	Nonrandomized controlled trials, including	Narrative reviews
	quasi-experimental and controlled	Abstracts/conference abstracts
	observation before-and-after studies	Study protocols
	Prospective cohort studies	Grey literature
	Retrospective cohort studies	Case reports, studies, series
	-	Letters
	Case–control studies	Meta-analyses, systematic reviews
	Cross-sectional studies	
Publication status	Articles published in peer-reviewed journals	Articles that have not been peer reviewed and are not published in peer-reviewed journals, including unpublished data, manuscripts, preprints, reports, abstracts, and conference proceedings
Date of publication	January 2008 until the search date of March 25, 2025	Articles published prior to January 2008 or after search date of March 25, 2025
Language of publication	Articles published in English	Articles published in languages other than English
Country	Countries that rank very high or high on the UN Human Development Index ⁷ (0.7 or higher) at the time of publication	
	ala mari indus CDM — aratai arat dialata madi	Countries in South Asia owing to difference in BMI categories compared to World Health Organization (WHO) BMI categories)

NOTE: BMI = body mass index; GDM = gestational diabetes mellitus.

Literature Search

A National Academies research librarian, in consultation with National Academies staff, the planning committee consultant, and the planning committee chair, designed the literature search strategy and searched MEDLINE, PubMed, Embase, and Scopus on March 25, 2025. The

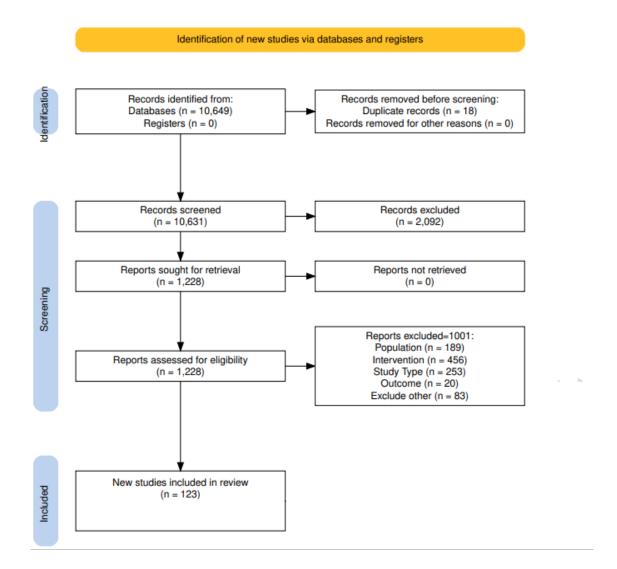
⁷ UN Human Development Index: https://hdr.undp.org/data-center/human-development-index#/indicies/HDI. (accessed August 6, 2025).

search results were managed and deduplicated using EndNote software (EndNote, 2013). A sample search strategy for MEDLINE is shown in Table A-2. The search results were uploaded into PICO Portal, a web-based, AI-powered systematic and scoping review management platform for evidence reviews.

Screening

Two phases of screening were conducted; in each phase, all articles were screened independently by two reviewers (trained staff from the National Academies). Screening was conducted using PICO Portal, and decisions were based on the inclusion and exclusion criteria determined a priori (PICO Portal, 2023). Each article was reviewed to determine if it met the inclusion criteria; if any of the exclusion criteria were met, the article was excluded. Any discrepancies in reviewer decisions were decided through discussion in reaching consensus or by additional trained staff who served as a third reviewer.

In the first phase of screening, 10,631 article titles and abstracts were screened by two independent reviewers using the prespecified criteria shown in Table A-1. In the second phase, the full text of 1,228 articles was screened by two independent reviewers. After full-text screening, 123 articles met full-inclusion criteria and are reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist for scoping reviews (Tricco et al., 2018; see Figure A-1).


TABLE A-2 Sample MEDLINE Search Strategy for Scoping Review on Maternal and Child Outcomes Associated with Gestational Weight Gain by Body Mass Index

#	Query
1	Body mass index/
2	Gestational weight gain/ or Pregnancy in obesity/ or Perinatal care/ or Postnatal care/ or
	Preconception care/ or Prenatal care/ or Maternal health/ or Postpartum period/ or Pregnancy/ or
	Pregnancy complications/ or Pregnant people/
3	(Randomized controlled trial or Controlled clinical trial or Controlled before-after or
	Observational study).pt.
4	Case-control studies/ or Prospective studies/ or Retrospective studies/ or Cross-sectional studies/
	or "Non-randomized controlled trials as topic"/ or "follow-up studies"/ or "longitudinal studies"/
5	3 or 4
6	1 and 2 and 5
7	(Editorial or Abstracts or Case reports or Letter or Meta-analysis or Systematic review).pt.
8	Congresses as topic/ or Clinical trial protocols as topic/
9	7 or 8
10	6 not 9
11	10 not (exp animals/ not humans/)
12	("Hong Kong" or "United Kingdom" or england or scotland or "Great Britain" or "Northern
	Ireland" or wales or albania or algeria or andorra or "Antigua and Barbuda" or argentina or
	armenia or australia or austria or azerbaijan or bahamas or bahrain or barbados or belarus or
	belgium or belize or "Bosnia and Herzegovina" or botswana or brazil or brunei or bulgaria or
	canada or chile or china or colombia or "Costa Rica" or croatia or cuba or cyprus or czechia or

denmark or dominica or "Dominican Republic" or ecuador or egypt or estonia or fiji or finland or

france or georgia or germany or greece or grenada or guyana or hungary or iceland or indonesia or iran or ireland or israel or italy or jamaica or japan or jordan or kazakhstan or korea or kuwait or kyrgyzstan or latvia or lebanon or libya or liechtenstein or lithuania or luxembourg or malaysia or maldives or malta or "Marshall Islands" or mauritius or mexico or moldova or mongolia or montenegro or netherlands or "New Zealand" or macedonia or norway or oman or palau or palestine or panama or paraguay or peru or philippines or poland or portugal or qatar or romania or russia or "Russian Federation" or "Saint Kitts and Nevis" or "Saint Lucia" or "Saint Vincent and the Grenadines" or samoa or "San Marino" or "Saudi Arabia" or serbia or seychelles or singapore or slovakia or slovenia or "South Africa" or spain or "Sri Lanka" or sweden or switzerland or thailand or tonga or "Trinidad and Tobago" or tunisia or turkey or turkmenistan or ukraine or "United Arab Emirates" or uruguay or uzbekistan or "Viet Nam" or "USA" or "united states" or "alabama" or "alaska" or "arizona" or "arkansas" or "california" or "colorado" or "connecticut" or "delaware" or "florida" or "georgia" or "hawaii" or "idaho" or "illinois" or "indiana" or "iowa" or "kansas" or "kentucky" or "louisiana" or "maine" or "maryland" or "massachusetts" or "michigan" or "minnesota" or "mississippi" or "missouri" or "montana" or "nebraska" or "nevada" or "new hampshire" or "new jersey" or "new mexico" or "new york" or "north carolina" or "north dakota" or "ohio" or "oklahoma" or "oregon" or "pennsylvania" or "rhode island" or "south carolina" or "south dakota" or "tennessee" or "texas" or "utah" or "vermont" or "virginia" or "washington" or "west virginia" or "wisconsin" or "wyoming" or "district of columbia").mp.

- 13 11 and 12
- limit 13 to (english language and yr="2005 -Current")

FIGURE A-1 PRISMA flow diagram of selection process for scoping review on maternal and child health outcomes associated with gestational weight gain by body mass index. NOTE: n = number. During the initial abstract screening phase, a 95 percent threshold was set for inclusion based on PICO Portal's AI-integrated algorithm.⁸

Data Extraction

The National Academies staff generated data extraction templates designed to extract variables identified and approved by the planning committee consultant and planning committee chair. Trained National Academies staff members extracted data using an Excel spreadsheet and predetermined criteria.

⁸ PICO Portal. 2023. Machine learning-assisted screening increases efficiency of systematic review. https://picoportal.org/2023/05/08/mla/ (accessed August 8, 2025).

DESCRIPTIVE RESULTS

Overall, 123 articles met the inclusion criteria, with 62 articles reporting maternal outcomes and 97 articles reporting infant and child outcomes (see Annex Table A-1). Twenty-one percent of articles reported only maternal outcomes, 49 percent reported only infant and child outcomes, and 29 percent reported both maternal and infant and child outcomes (see Figure A-2).

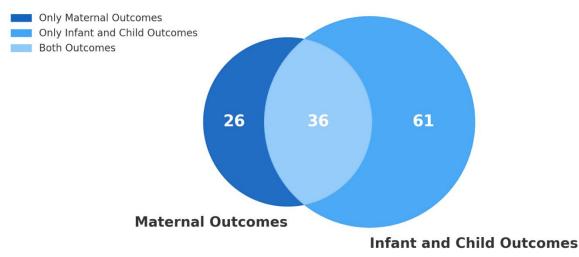


FIGURE A-2 Proportion of articles for maternal and infant/child outcomes, 2008–2025.

Maternal outcomes were categorized by life course stage: (1) antepartum, (2) intrapartum, (3) short-term postpartum (delivery to 11.9 months), and 4) long-term postpartum (>11.9 months). Intrapartum outcomes accounted for the largest share (61 percent), followed by antepartum (56 percent), short-term postpartum (32 percent), and long-term postpartum (18 percent), primarily driven by the high prevalence (89 percent) of studies reporting any type of cesarean delivery, which was the most common maternal outcome reported across all categories (see Table A-3).

TABLE A-3 Frequency of Reported Maternal Outcomes, 2008–2025

Category	N	Subtype	N (%)
Antepartum	35	GDM	21 (60)
		Preeclampsia	21 (60)
		Pregnancy-induced hypertension	14 (40)
		Other ^a	4 (11)
		Eclampsia	3 (8.6)
		Miscarriage	2(5.7)
Intrapartum	38	Cesarean delivery	34 (89)
		Induction of labor	7 (18)
		Operative vaginal delivery	5 (13)
		Other ^b	4 (11)
		Normal vaginal delivery	3 (7.9)
		Chorioamnionitis	3 (7.9)

		Medications administered	3 (7.9)
		Hydramnios	2 (5.3)
Short-term postpartum	20	PPWR	9 (45)
(0-11.9 months)		Other ^c	5 (25)
		Maternal morbidity	3 (15)
		Depression	3 (15)
		Cardiometabolic disease ^d	3 (15)
		Hospital stay duration	2 (10)
		Postpartum hemorrhage	2 (10)
Long-term postpartum	11	PPWR	8 (73)
(11.9+ months)		Cardiometabolic disease	3 (27)
		Other ^e	3 (27)

NOTE: Articles may report more than one maternal outcome. Other outcomes are defined as an outcome that was only reported once out of 62 articles. GDM = gestational diabetes mellitus; PPWR = postpartum weight retention.

Cesarean delivery, gestational diabetes mellitus (GDM), preeclampsia, pregnancy-induced hypertension, postpartum weight retention (PPWR), and induction of labor were the most reported outcomes regardless of stratified life course category. There was less variability in reported long-term postpartum outcomes (5 subtypes) compared to short-term postpartum outcomes (11 subtypes).⁹

Infant and child outcomes were categorized by life course stage: (1) delivery, (2) infant (0–11.9 months), (3) childhood (1–3 years), (4) childhood (4–8 years), and (5) childhood (9–18 years). Delivery outcomes accounted for the largest share (76 percent), followed by infant (26 percent), children 4–8 years (20 percent), children 1–3 years (16 percent), and children 9–18 years (9.4 percent) (see Table A-4).

TABLE A-4 Frequency of Reported Infant and Child Outcomes, 2008–2025

Category	N	Subtype	N (%)
Delivery	73	LGA	39 (53)
		SGA	35 (48)
		Preterm birth	26 (36)
		Birth weight	20 (27)
		NICU admission	14 (19)
		Macrosomia	13 (18)
		Other ^a	12 (16)

⁹ Subtypes refer to the unique count of outcomes. For example, long-term postpartum outcomes included PPWR, cardiometabolic disease, maternal obesity, return to prepregnancy BMI, and degenerative musculoskeletal conditions.

^a Other Antepartum outcomes include gestational hepatography, preterm labor, polyhydramnios, need for pharmacological treatment, and abortion.

^b Other intrapartum outcomes include blood transfusion, unplanned hysterectomy, maternal ICU admission, intrapartum bleeding, anemia, augmentation of labor, and delivery duration.

^c Other short-term postpartum outcomes include maternal mortality, return to prepregnancy BMI, breastfeeding initiation/duration, degenerative musculoskeletal conditions, and anxiety.

^d For short-and long-term postpartum outcomes, cardiometabolic disease includes metabolic syndrome, hypertension, Type II diabetes mellitus, and cardiovascular disease.

^e Other long-term postpartum outcomes include maternal obesity, return to prepregnancy BMI, and degenerative musculoskeletal conditions.

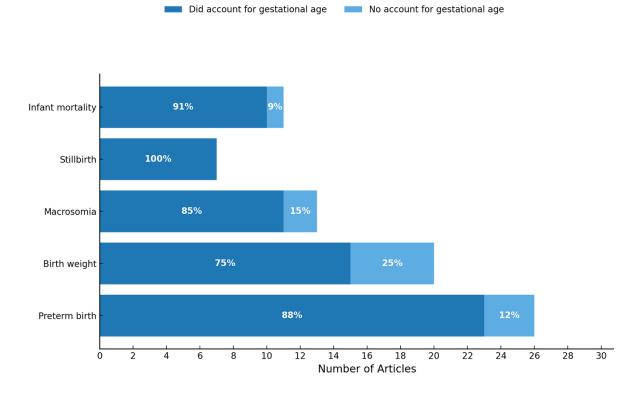
		Stillbirth Apgar score Shoulder dystocia Trauma Ventilation Seizures Adequate for gestational age Neonatal morbidity Neonatal mortality NEC	7 (9.6) 7 (9.6) 5 (6.8) 4 (5.5) 4 (5.5) 4 (5.5) 2 (2.7) 2 (2.7) 2 (2.7)
		Hemorrhage Sepsis	2 (2.7) 2 (2.7) 2 (2.7)
Infant (0–11.9 months)	25	Infant mortality Respiratory distress syndrome Neonatal hypoglycemia Congenital abnormalities Hyperbilirubinemia Neonatal hospitalization Infant weight BMI Other ^b Infant morbidity Allergies/Atopy Transfer to higher level care	11 (44) 5 (20) 4 (16) 4 (16) 3 (12) 3 (12) 3 (12) 3 (12) 3 (12) 2 (8.0) 2 (8.0) 2 (8.0)
Child (1–3 years)	15	Obesity Allergies/Atopy Intellectual development disorders	10 (64) 4 (29) 1 (7.1)
Child (4–8 years)	19	Obesity Allergies/Atopy Intellectual development disorders Other ^c	11 (58) 4 (21) 2 (11) 2 (11)
Child (9–18 years)	9	Obesity Allergies/Atopy Other ^d	5 (56) 2 (22) 2 (22)

NOTE: Other outcomes are defined as an outcome that was only reported once out of 97 articles. Articles may report more than one outcome. Percentages represent the proportion of outcomes in relation to the life course category. For example, LGA comprised 53 percent of all delivery outcomes. N = number; BMI = body mass index; LGA = large-for-gestational age; SGA = small-for-gestational age; NICU = neonatal intensive care unit; NEC = necrotizing enterocolitis.

^a Other delivery outcomes include term and postterm birth, antibiotics use, intrauterine growth restriction, breech presentation, placental weight, intellectual development disorders, neonatal metabolic abnormality, noncephalic presentation, umbilical cord pH, estimated blood loss, meconium aspiration, preterm premature rupture of membranes

^b Other infant (0–11.9 months) outcomes include infant length, intellectual development disorders, and breastfeeding (including exclusive).

^c Other child (4–8 years) outcomes include hyperactivity-inattention symptoms and early onset of the larche and pubarche.


^d Other child (9–18 years) outcomes include intellectual development disorders and early onset of the larche and pubarche.

Articles that reported on women with pre-pregnancy conditions were not quantified in analyses. Articles were included even if they did not account for gestational age in their analyses or methodology (See Box A-1). Large-for-gestational age (LGA), small-for-gestational age (SGA), preterm birth, birth weight, and neonatal intensive care unit (NICU) admission were the most reported outcomes regardless of stratified life course category. For SGA and LGA, 76 percent of unique articles reported both outcomes. These outcomes were often reported together when examining gestational weight gain to comprehensively measure both growth restriction (SGA < 10th percentile of birth weight) and excessive growth (LGA > 90th percentile of birth weight). However, accounting for gestational age when measuring the associations between GWG and infant mortality, stillbirth, birth weight, and preterm birth are important for timing of outcomes relative to duration of pregnancy. Most articles did account for gestational age (range of 75 percent to 100 percent), with the most variation in articles measuring birth weight (see Figure A-3).

BOX A-1

Methods Used in Studies to Account for Gestational Age in Measurements of Gestational Weight Gain

- 1. Limit the sample to term births (e.g., gestational age 37 weeks or more).
- 2. Calculate a rate of weight gain as the total weight gain divided by the weeks of gestation (e.g., 10 kg/30 weeks = 0.33 kg/week).
- 3. Calculate weight gain adequacy as a measure of how the participant's weight gain compares with the 2009 IOM guidelines based on gestational age.
- 4. Use pregnancy weight gain z-score charts to standardize weight gain according to gestational age.
- 5. Adjust for gestational age in the regression model.

FIGURE A-3 Percentage of articles accounting for gestational age: stratified by outcome, 2008–2025.

Grouping delivery outcomes by morbidity and mortality allows for higher accuracy for assessing higher-risk outcomes. Therefore, fetal and infant mortality (including both infant and neonatal mortality and stillbirth), infant morbidity (preterm birth, NICU admission, shoulder dystocia, trauma at delivery, ventilation, seizures, neonatal morbidity, NEC, hemorrhage, and sepsis), and other delivery outcomes (SGA, LGA, macrosomia, birth weight, Apgar score, adequate-for-gestational age, and other outcomes)¹⁰ were categorized together (see Figure A-4). The highest count (n = 128) occurred for other delivery outcomes, followed by infant morbidity (n = 65), and infant mortality (n = 20). Preterm birth (n = 26) and NICU admission (n = 14) contributed the highest proportion of reported morbidity outcomes, while neonatal morbidity, NEC, hemorrhage, and sepsis had the lowest count.

¹⁰ Other outcomes were categorized together since they were only reported in one article yet demonstrate the variability of outcomes reported in the scoping review (see note in Table A-4).

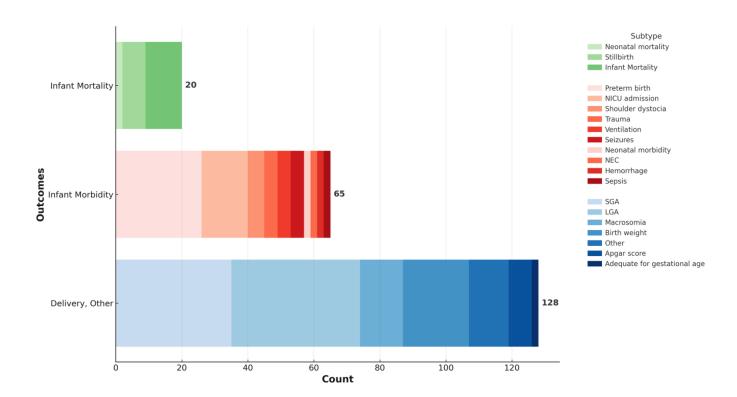


FIGURE A-4 Infant morbidity and mortality outcomes by subtype, 2008–2025. NOTE: Articles may report more than one outcome. Other delivery outcomes that were only reported by one article include: term and postterm birth, antibiotics use, intrauterine growth restriction, breech presentation, placental weight, intellectual development disorders, neonatal metabolic abnormality, noncephalic presentation, umbilical cord pH, estimated blood loss, meconium aspiration, preterm premature rupture of membranes. LGA = large-for-gestational age; SGA = small-for-gestational age; NICU = neonatal intensive care unit; NEC = necrotizing enterocolitis.

An evidence map was created for the top 20 most frequently reported maternal, infant, and child outcomes, stratified by prepregnancy or early pregnancy BMI (see Figure A-5). These outcomes were mapped across six BMI exposure categories: underweight, overweight, obesity (unstratified), and Classes 1, 2, and 3 obesity. LGA and SGA were consistently reported across all BMI groups. Cesarean delivery and preterm birth were also widely reported across BMI categories and, together with LGA and SGA, reflect standardized clinical outcomes that are more routinely collected in perinatal research.

BMI Category Obesity (unstratified) Class 3 obesity Class 1 obesity Class 2 obesity Underweight Overweight 20 LGA 17 27 SGA 17 23 25 19 GDM 6 Pre-eclampsia 10 6 17 28 23 10 10 Cesarean delivery Preterm birth 16 20 20 18 Birth weight 4 4 Pregnancy-induced HTN 5 Number of Articles NICU admission 4 Outcome Macrosomia 10 2 2 Infant mortality 6 Obesity (4-8 years) 4 Obesity (1-3 years) 5 PPWR (0-11.9 months) PPWR (11.9+ months) 5 Induction of labor 2 5 Apgar score Operative vaginal delivery

Top 20 Most Frequently Reported Outcomes by BMI Category

FIGURE A-5 Evidence map, top 20 most frequently reported outcomes stratified by BMI prepregnancy or early pregnancy BMI.

Respiratory distress syndrome

NOTE: LGA = large-for-gestational age; SGA = small-for-gestational age; GDM = gestational diabetes mellitus; HTN = hypertension; NICU = neonatal intensive care unit; PPWR = postpartum weight retention.

- 0

Overweight comprised the highest reported BMI category (106 articles; 86 percent), followed by underweight (69 articles; 56 percent); obesity, not stratified (62 articles; 50 percent); Class 1 obesity (42 articles; 34 percent); Class 2 obesity (34 articles; 28 percent); and Class 3 obesity (31 articles; 25 percent). Three articles combined Classes 2 and 3 obesity and one article combined Classes 1 and 2 obesity; those values are accounted for in both BMI categories that were combined (See Figure A-5). Fewer articles reported outcomes stratified by Classes 1, 2, and 3 obesity, with overall counts decreasing as BMI was stratified by class. While overweight and obesity (unstratified) categories had broader outcome coverage, there was an evidence gap for reported outcomes within Classes 2 and 3 obesity. Given the inclusion sample size for obesity classes ($n \ge 300$), fewer studies met the inclusion criteria compared to the unstratified obesity sample sizes ($n \ge 500$). Additionally, outcomes such as postpartum weight retention, child obesity, and respiratory distress syndrome were underrepresented in studies reporting by stratified BMI.

This scoping review captures the most recent peer-reviewed evidence published since the 2009 IOM gestational weight gain guidelines. Out of 123 articles published between January

2008 and March 25, 2025, cesarean delivery, LGA, SGA, and preterm birth were the most frequently reported adverse outcomes, often measured within the same studies as they are common outcomes reported for clinical surveillance and research. While more evidence exists on outcomes associated with higher class BMI categories than were available before 2008, evidence gaps remain, particularly for multiple outcomes, including short-term and long-term postpartum weight retention, child obesity at all life stages, and other adverse delivery and infant outcomes.

ACKNOWLEDGEMENTS

We thank Heather Hamner (U.S. Centers for Disease Control and Prevention) for developing the scope of this review, Kathleen Rasmussen (Planning Committee Chair) for her technical support developing the inclusion criteria and reviewing screened articles, Melanie Arthur and Sarah Poncet (National Academies staff) for screening articles and data extraction, and Anne Marie Houppert (Senior Librarian, National Academies) for conducting the literature searches.

EDITOR CONTRIBUTIONS

The editor's responsibilities were as follows—Jennifer Stephenson, Alice Vorosmarti, Lisa Bodnar, and Ann Yaktine: designed the research study; Jennifer Stephenson, Alice Vorosmarti: conducted the research; Jennifer Stephenson: assessed the data and developed the manuscript; Jennifer Stephenson, Alice Vorosmarti, Lisa Bodnar, Ann Yaktine: edited the manuscript; and all editors have read and approved the final manuscript.

CONFLICT OF INTEREST AND FUNDING

USDA and the Endocrine Society provided financial support to the National Academies of Sciences, Engineering, and Medicine. Internal funding was also provided. All editors declare that they have no known competing financial interests or personal relationships that could appear to influence the work reported in this paper.

REVIEWERS

To ensure that it meets institutional standards for quality and objectivity, this appendix was reviewed by Nicole Marshall, Oregon Health & Science University, and Andrea Deierlein, New York University. Leslie Sim, National Academies of Sciences, Engineering and Medicine served as the review coordinator.

For additional information regarding the workshop, visit https://www.nationalacademies.org/our-work/exploring-new-evidence-on-weight-gain-during-pregnancy-and-perinatal-outcomes-a-workshop.

REFERENCES

- Abebe, D. S., T. Von Soest, A. Von Holle, S. C. Zerwas, L. Torgersen, and C. M. Bulik. 2015. Developmental trajectories of postpartum weight 3 years after birth: Norwegian mother and child cohort study. *Maternal and Child Health Journal* 19(4):917–925.
- Aghaee, S., C. A. Laurent, J. Deardorff, A. Ferrara, L. C. Greenspan, C. P. Quesenberry, L. H. Kushi, and A. Kubo. 2019. Associations of maternal gestational weight gain and obesity with the timing of pubertal onset in daughters. *American Journal of Epidemiology* 188(7):1262–1269.
- Alberico, S., M. Montico, V. Barresi, L. Monasta, C. Businelli, V. Soini, A. Erenbourg, L. Ronfani, G. Maso, D. Domini, C. Fiscella, S. Casarsa, C. Zompicchiatti, M. D. Agostinis, A. D'Atri, R. Mugittu, S. L. Valle, C. D. Leonardo, V. Adamo, S. Smiroldo, G. D. Frate, M. Olivuzzi, S. Giove, M. Parente, D. Bassini, S. Melazzini, S. Guaschino, M. Piccoli, S. Demarini, D. Marchesoni, A. Rossi, G. Simon, and G. Tamburlini. 2014. The role of gestational diabetes, prepregnancy body mass index and gestational weight gain on the risk of newborn macrosomia: Results from a prospective multicentre study. *BMC Pregnancy and Childbirth* 14(1).
- Amyx, M., J. Zeitlin, B. Blondel, and C. Le Ray. 2023. Gestational weight gain adequacy and intrapartum oxytocin and cesarean section use: Observational population-based study in France. *Acta Obstetricia et Gynecologica Scandinavica* 102(3):301–312.
- Ashley-Martin, J., and C. Woolcott. 2014. Gestational weight gain and postpartum weight retention in a cohort of Nova Scotian women. *Maternal and Child Health Journal* 18(8):1927–1935.
- Badon, S. E., C. P. Quesenberry, F. Xu, L. A. Avalos, and M. M. Hedderson. 2020. Gestational weight gain, birthweight and early-childhood obesity: Between- and within-family comparisons. *International Journal of Epidemiology* 49(5):1682–1690.
- Badon, S. E., S. Dublin, N. Nance, M. M. Hedderson, R. Neugebauer, T. Easterling, T. C. Cheetham, L. Chen, V. L. Holt, and L. A. Avalos. 2021. Gestational weight gain and adverse pregnancy outcomes by pre-pregnancy BMI category in women with chronic hypertension: A cohort study. *Pregnancy Hypertension* 23:27–33.
- Beyerlein, A., A. M. Toschke, and R. Von Kries. 2010. Risk factors for childhood overweight: Shift of the mean body mass index and shift of the upper percentiles: Results from a cross-sectional study. *International Journal of Obesity* 34(4):642–648.
- Beyerlein, A., I. Nehring, P. Rzehak, J. Heinrich, M. J. Müller, S. Plachta-Danielzik, M. Wabitsch, M. Weck, H. Brenner, D. Rothenbacher, and R. von Kries. 2012. Gestational weight gain and body mass index in children: Results from three German cohort studies. *PLoS ONE* 7(3).
- Bider-Canfield, Z., M. P. Martinez, X. Wang, W. Yu, M. P. Bautista, J. Brookey, K. A. Page, T. A. Buchanan, and A. H. Xiang. 2017. Maternal obesity, gestational diabetes, breastfeeding and childhood overweight at age 2 years. *Pediatric Obesity* 12(2):171–178.
- Black, M. H., D. A. Sacks, A. H. Xiang, and J. M. Lawrence. 2013. The relative contribution of prepregnancy overweight and obesity, gestational weight gain, and IADPSG-defined gestational diabetes mellitus to fetal overgrowth. *Diabetes Care* 36(1):56–62.
- Bliddal, M., A. Pottegård, H. Kirkegaard, J. Olsen, J. S. Jørgensen, T. I. Sørensen, C. Wu, and E. A. Nohr. 2015. Mental disorders in motherhood according to prepregnancy BMI and pregnancy-related weight changes A Danish cohort study. *Journal of Affective Disorders* 183:322–329.
- Bliddal, M., A. Pottegärd, H. Kirkegaard, J. Olsen, J. S. Jørgensen, T. I. A. Sørensen, L. Dreyer, and E. A. Nohr. 2016. Association of pre-pregnancy body mass index, pregnancy-related weight changes, and parity with the risk of developing degenerative musculoskeletal conditions. *Arthritis and Rheumatology* 68(5):1156–1164.
- Bodnar, L. M., S. J. Pugh, T. L. Lash, J. A. Hutcheon, K. P. Himes, S. M. Parisi, and B. Abrams. 2016. Low gestational weight gain and risk of adverse perinatal outcomes in obese and severely obese women. *Epidemiology* 27(6):894–902.

- Bodnar, L. M., K. P. Himes, B. Abrams, S. M. Parisi, and J. A. Hutcheon. 2018. Early-pregnancy weight gain and the risk of preeclampsia: A case-cohort study. *Pregnancy Hypertension* 14:205–212.
- Boone-Heinonen, J., D. Dinh, R. Springer, S. Liu, J. O'Malley, N. A. Rosenquist, T. Schmidt, J. M. Snowden, S. T. Tran, and K. K. Vesco. 2024. Trimester-specific rate of gestational weight loss or gain and birth size: Differences by prepregnancy BMI. *Obesity* 32(9):1757–1768.
- Bouvier, D., J. C. Forest, E. Dion-Buteau, N. Bernard, E. Bujold, B. Pereira, and Y. Giguère. 2019. Association of maternal weight and gestational weight gain with maternal and neonate outcomes: A prospective cohort study. *Journal of Clinical Medicine* 8(12).
- Carlhäll, S., K. Källén, and M. Blomberg. 2020. The effect of maternal body mass index on duration of induced labor. *Acta Obstetricia et Gynecologica Scandinavica* 99(5):669–678.
- Carnero, A. M., C. R. Mejía, and P. J. García. 2012. Rate of gestational weight gain, pre-pregnancy body mass index and preterm birth subtypes: A retrospective cohort study from Peru. *BJOG: An International Journal of Obstetrics and Gynaecology* 119(8):924–935.
- Carreno, C. A., R. G. Clifton, J. C. Hauth, L. Myatt, J. M. Roberts, C. Y. Spong, M. W. Varner, J. M. Thorp, B. M. Mercer, A. M. Peaceman, S. M. Ramin, M. W. Carpenter, A. Sciscione, J. E. Tolosa, and Y. Sorokin. 2012. Excessive early gestational weight gain and risk of gestational diabetes mellitus in nulliparous women. *Obstetrics and Gynecology* 119(6):1227–1233.
- Castillo, H., I. S. Santos, and A. Matijasevich. 2015. Relationship between maternal pre-pregnancy body mass index, gestational weight gain and childhood fatness at 6-7 years by air displacement plethysmography. *Maternal and Child Nutrition* 11(4):606–617.
- Castillo, H., I. S. Santos, and A. Matijasevich. 2016. Maternal pre-pregnancy BMI, gestational weight gain and breastfeeding. *European Journal of Clinical Nutrition* 70(4):431–436.
- Chen, A., S. A. Feresu, C. Fernandez, and W. J. Rogan. 2009. Maternal obesity and the risk of infant death in the United States. *Epidemiology* 20(1):74–81.
- Chen, H. Y., and S. P. Chauhan. 2019. Association between gestational weight gain adequacy and adverse maternal and neonatal outcomes. *American Journal of Perinatology* 36(6):615–623.
- Chen-Xu, J., and Â. Coelho. 2022. Association between body mass index and gestational weight gain with obstetric and neonatal complications in pregnant women with gestational diabetes. *Acta Medica Portuguesa* 35(13).
- Chiossi, G., R. C. Costantini, D. Menichini, A. L. Tramontano, M. Diamanti, F. Facchinetti, and R. D. Amico. 2024. Do maternal BMI and gestational weight gain equally affect the risk of infant hypoxic and traumatic events? *PLoS ONE* 19(8 August).
- Class, Q. A. 2022. Obesity and the increasing odds of cesarean delivery. *Journal of Psychosomatic Obstetrics and Gynecology* 43(3):244–250.
- Cosson, E., C. Cussac-Pillegand, A. Benbara, I. Pharisien, M. T. Nguyen, S. Chiheb, P. Valensi, and L. Carbillon. 2016. Pregnancy adverse outcomes related to pregravid body mass index and gestational weight gain, according to the presence or not of gestational diabetes mellitus: A retrospective observational study. *Diabetes and Metabolism* 42(1):38–46.
- Cox Bauer, C. M., K. A. Bernhard, D. M. Greer, and D. C. Merrill. 2016. Maternal and neonatal outcomes in obese women who lose weight during pregnancy. *Journal of Perinatology* 36(4):278–283.
- Crane, J. M. G., J. White, P. Murphy, L. Burrage, and D. Hutchens. 2009. The effect of gestational weight gain by body mass index on maternal and neonatal outcomes. *Journal of Obstetrics and Gynaecology Canada* 31(1):28–35.
- Declercq, E., M. Macdorman, H. Cabral, and N. Stotland. 2016. Prepregnancy body mass index and infant mortality in 38 U.S. States, 2012-2013. *Obstetrics and Gynecology* 127(2):279–287.
- Dimitris, M. C., J. S. Kaufman, L. M. Bodnar, R. W. Platt, K. P. Himes, and J. A. Hutcheon. 2022. Gestational diabetes in twin versus singleton pregnancies with normal weight or overweight prepregnancy body mass index the mediating role of mid-pregnancy weight gain. *Epidemiology* 33(2):278–286.

- Dimitris, M. C., J. A. Hutcheon, R. W. Platt, M. Abrahamowicz, M. E. Beauchamp, K. P. Himes, L. M. Bodnar, and J. S. Kaufman. 2023. Investigating the shape and strength of the relationship between maternal weight gain and gestational age at delivery in twin and singleton pregnancies. *American Journal of Epidemiology* 192(12):2018–2032.
- Dow, C., E. Lorthe, L. Marchand-Martin, C. Galera, M. Tafflet, P. Y. Ancel, M. A. Charles, and B. Heude. 2022. Maternal pre-pregnancy obesity and offspring hyperactivity-inattention symptoms at 5 years in preterm and term children: A multi-cohort analysis. *Scientific Reports* 12(1).
- Drucker, A. M., E. I. Pope, A. E. Field, A. A. Qureshi, O. Dumas, and C. A. Camargo. 2019. Association between maternal pre-pregnancy body mass index, gestational weight gain, and offspring atopic dermatitis: A prospective cohort study. *Journal of Allergy and Clinical Immunology: In Practice* 7(1):96–102.e102.
- Dumas, O., R. Varraso, M. W. Gillman, A. E. Field, and C. A. Camargo. 2016. Longitudinal study of maternal body mass index, gestational weight gain, and offspring asthma. *Allergy: European Journal of Allergy and Clinical Immunology* 71(9):1295–1304.
- Dumas, O., A. C. Arroyo, M. K. Faridi, K. James, S. Hsu, C. Powe, and C. A. Camargo. 2022. Cohort study of maternal gestational weight gain, gestational diabetes, and childhood asthma. *Nutrients* 14(23).
- Durie, D. E., L. L. Thornburg, and J. C. Glantz. 2011. Effect of second-trimester and third-trimester rate of gestational weight gain on maternal and neonatal outcomes. *Obstetrics and Gynecology* 118(3):569–575.
- Durmus, B., L. R. Arends, L. Ay, A. C. Hokken-Koelega, H. Raat, A. Hofman, E. A. P. Steegers, and V. W. V. Jaddoe. 2013. Parental anthropometrics, early growth and the risk of overweight in preschool children: The generation R study. *Pediatric Obesity* 8(5):339–350.
- Durst, J. K., A. L. M. Sutton, S. P. Cliver, A. T. Tita, and J. R. Biggio. 2016. Impact of gestational weight gain on perinatal outcomes in obese women. *American Journal of Perinatology* 33(9):849–855.
- Eick, S. M., M. Welton, M. D. Claridy, S. G. Velasquez, N. Mallis, and J. F. Cordero. 2020. Associations between gestational weight gain and preterm birth in Puerto Rico. *BMC Pregnancy and Childbirth* 20(1).
- El Rafei, R., H. A. Abbas, L. Charafeddine, P. Nakad, A. Al Bizri, D. Hamod, and K. A. Yunis. 2016. Association of pre-pregnancy body mass index and gestational weight gain with preterm births and fetal size: An observational study from Lebanon. *Paediatric and Perinatal Epidemiology* 30(1):38–45.
- El Rafei, R., H. A. Abbas, H. Alameddine, A. A. Bizri, I. Melki, and K. A. Yunis. 2018. Assessing the risk of having small for gestational age newborns among Lebanese underweight and normal prepregnancy weight women. *Maternal and Child Health Journal* 22(1):130–136.
- EndNote. 2013. Version 21. Philadelphia, PA: Clarivate.
- Ensenauer, R., A. Chmitorz, C. Riedel, N. Fenske, H. Hauner, U. Nennstiel-Ratzel, and R. Von Kries. 2013. Effects of suboptimal or excessive gestational weight gain on childhood overweight and abdominal adiposity: Results from a retrospective cohort study. *International Journal of Obesity* 37(4):505–512.
- Gawade, P., G. Markenson, F. Bsat, A. Healy, P. Pekow, and M. Plevyak. 2011. Association of gestational weight gain with cesarean delivery rate after labor induction. *Journal of Reproductive Medicine* 56(3):95–102.
- Guo, Y., S. C. S. Souza, L. Bruce, R. Luo, D. El-Chaâr, L. M. Gaudet, K. Muldoon, S. Hawken, S. I. Dunn, A. L. J. Dingwall-Harvey, M. C. Walker, S. W. Wen, and D. J. Corsi. 2023. Gestational weight loss and fetal growth in uncomplicated pregnancies among women with obesity: A population-based retrospective cohort study. *International Journal of Obesity* 47(12):1269–1277.
- Guo, Y., S. C. S. Souza, L. Bruce, R. Luo, D. El-Chaâr, L. M. Gaudet, K. Muldoon, S. Hawken, S. I. Dunn, R. Rennicks White, A. L. J. Dingwall-Harvey, M. C. Walker, S. W. Wen, and D. J. Corsi. 2024. Risk related to gestational weight loss among individuals with obesity: A population-based cohort study. *Obesity* 32(12):2376–2387.

- Han, S. Y., A. A. Brewis, and A. Wutich. 2016. Body image mediates the depressive effects of weight gain in new mothers, particularly for women already obese: Evidence from the Norwegian mother and child cohort study. *BMC Public Health* 16(1).
- Harpsøe, M. C., S. Basit, P. Bager, J. Wohlfahrt, C. S. Benn, E. A. Nøhr, A. Linneberg, and T. Jess. 2013. Maternal obesity, gestational weight gain, and risk of asthma and atopic disease in offspring: A study within the Danish national birth cohort. *Journal of Allergy and Clinical Immunology* 131(4):1033–1040.
- Haugen, M., A. L. Brantsæter, A. Winkvist, L. Lissner, J. Alexander, B. Oftedal, P. Magnus, and H. M. Meltzer. 2014. Associations of pre-pregnancy body mass index and gestational weight gain with pregnancy outcome and postpartum weight retention: A prospective observational cohort study. *BMC Pregnancy and Childbirth* 14(1).
- Hinkle, S. N., A. J. Sharma, D. W. Swan, L. A. Schieve, U. Ramakrishnan, and A. D. Stein. 2012. Excess gestational weight gain is associated with child adiposity among mothers with normal and overweight prepregnancy weight status. *Journal of Nutrition* 142(10):1851–1858.
- Houde, M., E. M. Dahdouh, V. Mongrain, E. Dubuc, D. Francoeur, and J. Balayla. 2015. The effect of adequate gestational weight gain among adolescents relative to adults of equivalent body mass index and the risk of preterm birth, cesarean delivery, and low birth weight. *Journal of Pediatric and Adolescent Gynecology* 28(6):502–507.
- Huang, L., X. Yu, S. Keim, L. Li, L. Zhang, and J. Zhang. 2014. Maternal prepregnancy obesity and child neurodevelopment in the collaborative perinatal project. *International Journal of Epidemiology* 43(3):783–792.
- Hunt, K. J., M. C. Alanis, E. R. Johnson, M. E. Mayorga, and J. E. Korte. 2013. Maternal pre-pregnancy weight and gestational weight gain and their association with birthweight with a focus on racial differences. *Maternal and Child Health Journal* 17(1):85–94.
- Hutcheon, J. A., O. Stephansson, S. Cnattingius, L. M. Bodnar, A. K. Wikström, and K. Johansson. 2018. Pregnancy weight gain before diagnosis and risk of preeclampsia a population-based cohort study in nulliparous women. *Hypertension* 72(2):433–441.
- IOM (Institute of Medicine). 2009. Weight gain during pregnancy: Reexamining the guidelines. Washington, DC: The National Academies Press.
- Jain, A. P., J. A. Gavard, D. J. Mostello, J. J. Rice, R. B. Catanzaro, and S. A. Hopkins. 2016. Characteristics of recurrent large-for-gestational-age infants in obese women. *American Journal of Perinatology* 33(9):918–924.
- Jeric, M., D. Roje, N. Medic, T. Strinic, Z. Mestrovic, and M. Vulic. 2013. Maternal pre-pregnancy underweight and fetal growth in relation to Institute of Medicine recommendations for gestational weight gain. *Early Human Development* 89(5):277–281.
- Joaquino, S. M., H. C. Lee, and B. Abrams. 2021. Pre-pregnancy body mass index, gestational weight gain and postnatal growth in preterm infants. *Journal of Perinatology* 41(8):1825–1834.
- Johansson, K., J. A. Hutcheon, L. M. Bodnar, S. Cnattingius, and O. Stephansson. 2018. Pregnancy weight gain by gestational age and stillbirth: A population-based cohort study. *BJOG: An International Journal of Obstetrics and Gynaecology* 125(8):973–981.
- Johansson, K., L. M. Bodnar, O. Stephansson, B. Abrams, and J. A. Hutcheon. 2024. Safety of low weight gain or weight loss in pregnancies with Class 1, 2, and 3 obesity: A population-based cohort study. *Lancet* 403(10435):1472–1481.
- Johnson, D., C. Madsen, A. Banaag, D. S. Krantz, and T. P. Koehlmoos. 2023. Pregnancy weight gain and postpartum weight retention in active duty military women: Implications for readiness. *Military Medicine* 188(5-6):e1076–e1083.
- Ketterl, T. G., N. J. Dundas, S. A. Roncaioli, A. J. Littman, and A. I. Phipps. 2018. Association of prepregnancy BMI and postpartum weight retention before second pregnancy, Washington state, 2003–2013. *Maternal and Child Health Journal* 22(9):1339–1344.

- Kirkegaard, H., H. Stovring, K. M. Rasmussen, B. Abrams, T. I. Soørensen, and E. A. Nohr. 2014. How do pregnancy-related weight changes and breastfeeding relate to maternal weight and BMI-adjusted waist circumference 7 y after delivery? Results from a path analysis 1-3. *American Journal of Clinical Nutrition* 99(2):312–319.
- Kirkegaard, H., M. Bliddal, H. Støvring, K. M. Rasmussen, E. P. Gunderson, L. Køber, T. I. A. Sørensen, and E. A. Nøhr. 2021. Maternal weight change from prepregnancy to 18 months postpartum and subsequent risk of hypertension and cardiovascular disease in Danish women: A cohort study. *PLoS Medicine* 18(4).
- Lee, P. M. Y., L. A. Tse, K. D. László, D. Wei, Y. Yu, and J. Li. 2022. Association of maternal gestational weight gain with intellectual developmental disorder in the offspring: A nationwide follow-up study in Sweden. *BJOG: An International Journal of Obstetrics and Gynaecology* 129(4):540–549.
- Leermakers, E. T. M., A. M. M. Sonnenschein-Van Der Voort, R. Gaillard, A. Hofman, J. C. De Jongste, V. W. V. Jaddoe, and L. Duijts. 2013. Maternal weight, gestational weight gain and preschool wheezing: The generation R study. *European Respiratory Journal* 42(5):1234–1243.
- Lengyel, C. S., S. Ehrlich, J. D. Iams, L. J. Muglia, and E. A. DeFranco. 2017. Effect of modifiable risk factors on preterm birth: A population based-cohort. *Maternal and Child Health Journal* 21(4):777–785.
- Leonard, S. A., L. C. Petito, O. Stephansson, J. A. Hutcheon, L. M. Bodnar, M. S. Mujahid, Y. Cheng, and B. Abrams. 2017a. Weight gain during pregnancy and the black-white disparity in preterm birth. *Annals of Epidemiology* 27(5):323–328.e321.
- Leonard, S. A., K. M. Rasmussen, J. C. King, and B. Abrams. 2017b. Trajectories of maternal weight from before pregnancy through postpartum and associations with childhood obesity. *American Journal of Clinical Nutrition* 106(5):1295–1301.
- Leonard, S. A., B. Abrams, E. K. Main, D. J. Lyell, and S. L. Carmichael. 2020. Weight gain during pregnancy and the risk of severe maternal morbidity by prepregnancy BMI. *American Journal of Clinical Nutrition* 111(4):845–853.
- Li, S., L. Rosenberg, J. R. Palmer, G. S. Phillips, L. J. Heffner, and L. A. Wise. 2013. Central adiposity and other anthropometric factors in relation to risk of macrosomia in an African American population. *Obesity* 21(1):178–184.
- Liu, X., H. Wang, L. Yang, M. Zhao, C. G. Magnussen, and B. Xi. 2022. Associations between gestational weight gain and adverse birth outcomes: A population-based retrospective cohort study of 9 million mother-infant pairs. *Frontiers in Nutrition* 9.
- MacDonald, S. C., L. M. Bodnar, K. P. Himes, and J. A. Hutcheon. 2017. Patterns of gestational weight gain in early pregnancy and risk of gestational diabetes mellitus. *Epidemiology* 28(3):419–427.
- Machado, C., S. Monteiro, and M. J. Oliveira. 2020. Impact of overweight and obesity on pregnancy outcomes in women with gestational diabetes Results from a retrospective multicenter study. *Archives of Endocrinology and Metabolism* 64(1):45–51.
- Madzia, J., D. McKinney, E. Kelly, and E. Defranco. 2021. Influence of gestational weight gain on the risk of preterm birth for underweight women living in food deserts. *American Journal of Perinatology* 38:E77–E83.
- Mamun, A. A., L. K. Callaway, M. J. O'Callaghan, G. M. Williams, J. M. Najman, R. Alati, A. Clavarino, and D. A. Lawlor. 2011. Associations of maternal pre-pregnancy obesity and excess pregnancy weight gains with adverse pregnancy outcomes and length of hospital stay. *BMC Pregnancy and Childbirth* 11.
- Margerison-Zilko, C. E., B. P. Shrimali, B. Eskenazi, M. Lahiff, A. R. Lindquist, and B. F. Abrams. 2012. Trimester of maternal gestational weight gain and offspring body weight at birth and age five. *Maternal and Child Health Journal* 16(6):1215–1223.
- Mbah, A. K., J. L. Kornosky, S. Kristensen, E. M. August, A. P. Alio, P. J. Marty, V. Belogolovkin, K. Bruder, and H. M. Salihu. 2010. Super-obesity and risk for early and late pre-eclampsia. *BJOG:* an International Journal of Obstetrics and Gynaecology 117(8):997–1004.

- McCurdy, R. J., D. J. Delgado, J. K. Baxter, and V. Berghella. 2022. Influence of weight gain on risk for cesarean delivery in obese pregnant women by class of obesity: Pregnancy risk assessment monitoring system (PRAMS). *Journal of Maternal-Fetal and Neonatal Medicine* 35(14):2781–2787.
- McDonald, S. D., C. Woolcott, N. Chapinal, Y. Guo, P. Murphy, and S. Dzakpasu. 2018. Interprovincial variation in pre-pregnancy body mass index and gestational weight gain and their impact on neonatal birth weight with respect to small and large for gestational age. *Canadian Journal of Public Health* 109(4):527–538.
- Meštrović, Z., D. Roje, A. Relja, I. Kosović, N. Aračić, M. Vulić, and O. Polašek. 2019. Maternal body mass index change as a new optimal gestational weight gain predictor in overweight women. *Croatian Medical Journal* 60(6):508–514.
- Moore Simas, T. A., M. E. Waring, X. Liao, A. Garrison, G. M. T. Sullivan, A. E. Howard, and J. R. Hardy. 2012. Prepregnancy weight, gestational weight gain, and risk of growth affected neonates. *Journal of Women's Health* 21(4):410–417.
- Morken, N. H., K. Klungsøyr, P. Magnus, and R. Skjærven. 2013. Pre-pregnant body mass index, gestational weight gain and the risk of operative delivery. *Acta Obstetricia et Gynecologica Scandinavica* 92(7):809–815.
- Mourtakos, S. P., K. D. Tambalis, D. B. Panagiotakos, G. Antonogeorgos, C. D. Alexi, M. Georgoulis, G. Saade, and L. S. Sidossis. 2017. Association between gestational weight gain and risk of obesity in preadolescence: A longitudinal study (1997–2007) of 5,125 children in Greece. *Journal of Human Nutrition and Dietetics* 30(1):51–58.
- Mustaniemi, S., H. Nikkinen, A. Bloigu, A. Pouta, R. Kaaja, J. G. Eriksson, H. Laivuori, M. Gissler, E. Kajantie, and M. Vääräsmäki. 2021. Normal gestational weight gain protects from large-forgestational-age birth among women with obesity and gestational diabetes. *Frontiers in Public Health* 9:550860.
- Niknam, A., S. Behboudi-Gandevani, M. Rahmati, F. Firouzi, F. Azizi, and F. Ramezani Tehrani. 2024. Gestational weight gain as a mediator of the relationship between pre-pregnancy body mass index and the risk of preterm birth: A four-way decomposition analysis. *International Journal of Gynecology and Obstetrics* 167(3):1168–1177.
- Nilses, C., M. Persson, M. Lindkvist, K. Petersson, and I. Mogren. 2017. High weight gain during pregnancy increases the risk for emergency caesarean section population-based data from the Swedish maternal health care register 2011-2012. *Sexual and Reproductive Healthcare* 11:47–52.
- Nohr, E. A., M. Vaeth, J. L. Baker, T. I. A. Sørensen, J. Olsen, and K. M. Rasmussen. 2008. Combined associations of prepregnancy body mass index and gestational weight gain with the outcome of pregnancy. *American Journal of Clinical Nutrition* 87(6):1750–1759.
- Nohr, E. A., M. Vaeth, J. L. Baker, T. I. A. Sørensen, J. Olsen, and K. M. Rasmussen. 2009. Pregnancy outcomes related to gestational weight gain in women defined by their body mass index, parity, height, and smoking status. *American Journal of Clinical Nutrition* 90(5):1288–1294.
- Oza-Frank, R., and S. A. Keim. 2013. Should obese women gain less weight in pregnancy than recommended? *Birth* 40(2):107–114.
- Palumbo, A. M., G. M. Muraca, A. Fuller, C. D. G. Keown-Stoneman, C. S. Birken, J. L. Maguire, L. N. Anderson, R. Kandel, M. Hassan, TARGet Kids! Collaboration. 2025. The association between self-reported total gestational weight gain by pre-pregnancy body mass index and moderate to late preterm birth. *BMC Pregnancy and Childbirth* 25(1).
- Petersen, J. M., J. A. Hutcheon, L. M. Bodnar, S. E. Parker, K. A. Ahrens, and M. M. Werler. 2023. Weight gain patterns among pregnancies with obesity and small- and large-for-gestational-age births. *Obesity* 31(4):1133–1145.
- PICO Portal. 2023. *Machine learning-assisted screening increases efficiency of systematic review*. https://picoportal.org/2023/05/08/mla/ (accessed August 12, 2025).

- Polinski, K. J., G. A. Bell, M. H. Trinh, R. Sundaram, P. Mendola, S. L. Robinson, E. M. Bell, T. Adeyeye, T. C. Lin, and E. H. Yeung. 2022. Maternal obesity, gestational weight gain, and offspring asthma and atopy. *Annals of Allergy, Asthma and Immunology* 129(2):199–204.e193.
- Premru-Srsen, T., Z. Kocic, V. Fabjan Vodusek, K. Geršak, and I. Verdenik. 2019. Total gestational weight gain and the risk of preeclampsia by pre-pregnancy body mass index categories: A population-based cohort study from 2013 to 2017. *Journal of Perinatal Medicine* 47(6):585–591.
- Robinson, C. J., E. G. Hill, M. C. Alanis, E. Y. Chang, D. D. Johnson, and J. S. Almeida. 2010. Examining the effect of maternal obesity on outcome of labor induction in patients with preeclampsia. *Hypertension in Pregnancy* 29(4):446–456.
- Rockhill, K., H. Dorfman, M. Srinath, and C. Hogue. 2015. The effects of prepregnancy body mass index and gestational weight gain on fetal macrosomia among American Indian/Alaska Native women. *Maternal and Child Health Journal* 19(11):2480–2491.
- Salihu, H. M., A. K. Mbah, A. P. Alio, H. B. Clayton, and O. Lynch. 2009. Low pre-pregnancy body mass index and risk of medically indicated versus spontaneous preterm singleton birth. *European Journal of Obstetrics, Gynecology, and Reproductive Biology* 144(2):119–123.
- Santos Monteiro, S., T. S. Santos, L. Fonseca, M. Saraiva, F. Pichel, C. Pinto, M. T. Pereira, J. Vilaverde, M. C. Almeida, and J. Dores. 2023. Inappropriate gestational weight gain impact on maternofetal outcomes in gestational diabetes. *Annals of Medicine* 55(1):207–214.
- Shin, D., and W. O. Song. 2015. Prepregnancy body mass index is an independent risk factor for gestational hypertension, gestational diabetes, preterm labor, and small- and large-for-gestational-age infants. *Journal of Maternal-Fetal and Neonatal Medicine* 28(14):1679–1686.
- Simko, M., A. Totka, D. Vondrova, M. Samohyl, J. Jurkovicova, M. Trnka, A. Cibulkova, J. Stofko, and L. Argalasova. 2019. Maternal body mass index and gestational weight gain and their association with pregnancy complications and perinatal conditions. *International Journal of Environmental Research and Public Health* 16(10).
- Simonsen, S. E., J. L. Lyon, J. B. Stanford, C. A. Porucznik, M. S. Esplin, and M. W. Varner. 2013. Risk factors for recurrent preterm birth in multiparous Utah women: A historical cohort study. *BJOG: An International Journal of Obstetrics and Gynaecology* 120(7):863–872.
- Sorbye, L. M., R. Skjaerven, K. Klungsoyr, and N. H. Morken. 2017. Gestational diabetes mellitus and interpregnancy weight change: A population-based cohort study. *PLoS Medicine* 14(8).
- Stamnes Køpp, U. M., K. Dahl-Jørgensen, H. Stigum, L. Frost Andersen, Ø. Næss, and W. Nystad. 2012. The associations between maternal pre-pregnancy body mass index or gestational weight change during pregnancy and body mass index of the child at 3 years of age. *International Journal of Obesity* 36(10):1325–1331.
- Tabet, M., L. M. Harper, L. H. Flick, and J. J. Chang. 2017. Gestational weight gain in the first two pregnancies and perinatal outcomes in the second pregnancy. *Paediatric and Perinatal Epidemiology* 31(4):304–313.
- Tranidou, A., E. Magriplis, I. Tsakiridis, N. Pazaras, A. Apostolopoulou, M. Chourdakis, and T. Dagklis. 2023. Effect of gestational weight gain during the first half of pregnancy on the incidence of GDM, results from a pregnant cohort in northern Greece. *Nutrients* 15(4).
- Tricco, A. C., E. Lillie, W. Zarin, K. K. O'Brien, H. Colquhoun, D. Levac, D. Moher, M. D. Peters, T. Horsley, and L. Weeks. 2018. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. *Annals of Internal Medicine* 169(7):467–473.
- Truong, Y. N., L. M. Yee, A. B. Caughey, and Y. W. Cheng. 2015. Weight gain in pregnancy: Does the Institute of Medicine have it right? *American Journal of Obstetrics and Gynecology* 212(3):362.e361–362.e368.
- Tutlam, N. T., Y. Liu, E. J. Nelson, L. H. Flick, and J. J. Chang. 2017. The effects of race and ethnicity on the risk of large-for-gestational-age newborns in women without gestational diabetes by prepregnancy body mass index categories. *Maternal and Child Health Journal* 21(8):1643–1654.

- Ukah, U. V., H. Bayrampour, Y. Sabr, N. Razaz, W.-S. Chan, K. I. Lim, and S. Lisonkova. 2019. Association between gestational weight gain and severe adverse birth outcomes in Washington state, U.S.: A population-based retrospective cohort study, 2004-2013. *PLoS Medicine* 16(12):e1003009.
- Vesco, K. K., A. J. Sharma, P. M. Dietz, J. H. Rizzo, W. M. Callaghan, L. England, F. C. Bruce, D. J. Bachman, V. J. Stevens, and M. C. Hornbrook. 2011. Newborn size among obese women with weight gain outside the 2009 Institute of Medicine recommendation. *Obstetrics and Gynecology* 117(4):812–818.
- Von Kries, R., R. Ensenauer, A. Beyerlein, U. Amann-Gassner, H. Hauner, and A. S. Rosario. 2011. Gestational weight gain and overweight in children: Results from the cross-sectional German Kiggs study. *International Journal of Pediatric Obesity* 6(1):45–52.
- Wang, L., X. Zhang, T. Chen, J. Tao, Y. Gao, L. Cai, H. Chen, and C. Yu. 2021. Association of gestational weight gain with infant morbidity and mortality in the United States. *JAMA Network Open* 4(12):e2141508.
- Wang, X., M. P. Martinez, T. Chow, and A. H. Xiang. 2020. BMI growth trajectory from ages 2 to 6 years and its association with maternal obesity, diabetes during pregnancy, gestational weight gain, and breastfeeding. *Pediatric Obesity* 15(2):e12579.
- Weschenfelder, F., T. Lehmann, E. Schleussner, and T. Groten. 2019. Gestational weight gain particularly affects the risk of large for gestational age infants in non-obese mothers. *Geburtshilfe und Frauenheilkunde* 79(11):1183–1190.
- Weschenfelder, F., F. Hein, T. Lehmann, E. Schleußner, and T. Groten. 2021. Contributing factors to perinatal outcome in pregnancies with gestational diabetes—What matters most? A retrospective analysis. *Journal of Clinical Medicine* 10(2):1–12.
- Widen, E. M., A. R. Nichols, L. Harper, A. Cahill, J. N. Davis, S. F. Foster, R. R. Rickman, F. Xu, and M. M. Hedderson. 2024. Weight loss, stability, and low weight gain during pregnancy among individuals with obesity: Associations with adverse perinatal outcomes: An observational study. *American Journal of Perinatology* 41(11):1577–1585.
- Wilkins, E. G., B. Sun, A. S. Thomas, A. Alabaster, M. Greenberg, J. D. Sperling, D. L. Walton, J. Alves, and E. P. Gunderson. 2023. Low gestational weight gain (+2.0 to 4.9 kg) for singleton-term gestations associated with favorable perinatal outcomes for all prepregnancy obesity classes. *AJOG Global Reports* 3(3):100246.
- Wu, B., V. Shabanova, S. Taylor, and N. L. Hawley. 2024. Pre-pregnancy BMI, rate of gestational weight gain, and preterm birth among US Pacific islander individuals. *Obesity* 32(4):798–809.
- Xu, H., E. V. Arkema, S. Cnattingius, O. Stephansson, and K. Johansson. 2021. Gestational weight gain and delivery outcomes: A population-based cohort study. *Paediatric and Perinatal Epidemiology* 35(1):47–56.
- Xu, H., J. A. Hutcheon, X. Liu, O. Stephansson, S. Cnattingius, E. V. Arkema, and K. Johansson. 2022. Risk of gestational diabetes mellitus in relation to early pregnancy and gestational weight gain before diagnosis: A population-based cohort study. *Acta Obstetricia et Gynecologica Scandinavica* 101(11):1253–1261.
- Yao, R., B. Y. Park, S. E. Foster, and A. B. Caughey. 2017. The association between gestational weight gain and risk of stillbirth: A population-based cohort study. *Annals of Epidemiology* 27(10):638–644.e631.
- Yee, L. M., A. B. Caughey, and Y. W. Cheng. 2017. Association between gestational weight gain and perinatal outcomes in women with chronic hypertension. *American Journal of Obstetrics and Gynecology* 217(3):348.e341–348.e349.
- Ylöstalo, T., M. T. Saha, T. Nummi, U. Harjunmaa, M. K. Salo, and N. Vuorela. 2024. Maternal weight, smoking, and diabetes provided early predictors of longitudinal body mass index growth patterns in childhood. *Acta Paediatrica, International Journal of Paediatrics* 113(5):1076–1086.

Zhu, Y., J. Zhang, Q. Li, and M. Lin. 2023. Association between gestational weight gain and preterm birth and post-term birth: A longitudinal study from the National Vital Statistics System Database. *BMC Pediatrics* 23(1).

A-1

Annex: Included Articles

ANNEX TABLE A-1 Included Articles by Maternal and Infant and Child Outcomes

Author	Year	Maternal Outcome	Infant, Child Outcome
Abebe, D. S.	2015	✓	
Aghaee, S.	2019		✓
Alberico, S.	2014	✓	✓
Amyx, M.	2023	✓	
Ashley-Martin, J.	2014	✓	
Badon, S. E.	2021	✓	✓
Badon, S. E.	2020		✓
Beyerlein, A.	2012		✓
Beyerlein, A.	2010	✓	✓
Bider-Canfield, Z.	2017		✓
Black, M. H.	2013	✓	✓
Bliddal, M.	2015	✓	
Bliddal, M.	2016	✓	
Bodnar, L. M.	2016	✓	✓
Bodnar, L. M.	2018	✓	
Boone-Heinonen, J.	2024		✓
Bouvier, D.	2019	✓	✓
Carlhäll, S.	2020	✓	✓
Carnero, A. M.	2012		✓
Carreno, C. A.	2012	✓	✓
Castillo, H.	2015		✓
Castillo, H.	2016	✓	✓
Chen, A.	2009		✓
Chen, H. Y.	2019		✓
Chen-Xu, J.	2022	✓	✓

Chiossi, G.	2024		✓
Class, Q. A.	2022	✓	✓
Cosson, E.	2016	✓	✓
Cox Bauer, C. M.	2016	✓	✓
Crane, J. M. G.	2009	✓	✓
Declercq, E.	2016		✓
Dimitris, M. C.	2023		✓
Dimitris, M. C.	2022	✓	
Dow, C.	2022		✓
Drucker, A. M.	2019		✓
Dumas, O.	2022		✓
Dumas, O.	2016		✓
Durie, D. E.	2011	✓	✓
Durmus, B.	2012	✓	✓
Durst, Jennifer K.	2016	✓	✓
Eick, S. M.	2020		✓
El Rafei, R.	2016		✓
El Rafei, R.	2018		✓
Ensenauer, R.	2013		✓
Gawade, P.	2011	✓	
Guo, Y.	2023		✓
Guo, Y.	2024		✓
Han, S. Y.	2016	✓	
Harpsøe, M. C.	2012		✓
Haugen, M.	2014	✓	✓
Hinkle, S. N.	2012		✓
Houde, M.	2015	✓	✓
Huang, L.	2014		✓
Hunt, K. J.	2013		✓
Hutcheon, J. A.	2018	✓	
Jain, A. P.	2016		✓
Jeric, M.	2013		✓
Joaquino, S. M.	2021		✓
Johansson, K.	2024	✓	✓

T 1 TZ	2010		
Johansson, K.	2018		✓
Johnson, D.	2023	✓	
Ketterl, T. G.	2018	✓	
Kirkegaard, H.	2021	✓	
Kirkegaard, H.	2014	✓	
Lee, P. M. Y.	2021		✓
Leermakers, E. T. M.	2013		✓
Lengyel, C. S.	2017		✓
Leonard, S. A.	2020	✓	
Leonard, S. A.	2017		✓
Leonard, S. A.	2017		✓
Li, S.	2013		✓
Liu, X.	2022		✓
MacDonald, S. C.	2017	✓	
Machado, C.	2020	✓	✓
Madzia, J.	2021		✓
Mamun, A. A.	2011	✓	✓
Margerison Zilko, C. E.	2010	✓	✓
Mbah, A. K.	2010	✓	
McCurdy, R. J.	2022	✓	
McDonald, S. D.	2018		✓
Meštrović, Z.	2019		✓
Moore Simas, T. A.	2012		✓
Morken, N. H.	2013	✓	
Mourtakos, S. P.	2017		✓
Mustaniemi, S.	2021		✓
Niknam, A.	2024		✓
Nilses, C.	2017	✓	
Nohr, E. A.	2009	✓	✓
Nohr, E. A.	2008	✓	✓
Oza-Frank, R.	2013	✓	✓
Palumbo, A. M.	2025		✓
Petersen, J. M.	2023		✓
Polinski, K. J.	2022		✓

D C T	2010		
Premru-Srsen, T.	2019	~	
Robinson, C. J.	2010	✓	
Rockhill, K.	2015		✓
Salihu, H. M.	2009		✓
Santos Monteiro, S.	2023	✓	✓
Shin, D.	2014	✓	✓
Simko, M.	2019	✓	✓
Simonsen, S. E.	2013		✓
Sorbye, L. M.	2017	✓	
Stamnes Køpp, U. M.	2012		✓
Tabet, M.	2017		✓
Tranidou, A.	2023	✓	
Truong, Y. N.	2015	✓	✓
Tutlam, N. T.	2017		✓
Ukah, U. Vivian	2019	✓	✓
Vesco, K. K.	2011		✓
von Kries, R.	2010		✓
Wang, L.	2021		✓
Wang, X.	2020		✓
Weschenfelder, F.	2021	✓	✓
Weschenfelder, F.	2019	✓	✓
Widen, E. M.	2023	✓	✓
Wilkins, E. G.	2023	✓	✓
Wu, B.	2024		✓
Xu, H.	2020	✓	
Xu, H.	2022	✓	
Yao, R.	2017		✓
Yee, L. M.	2017	✓	✓
Ylöstalo, T.	2024		✓
Zhu, Y.	2023		✓