

Exceptional service in the national interest

Advanced Manufacturing Lessons from National Security

Mohan Karulkar, PhD

Center for Advanced Manufacturing & Innovation DREA²M LDRD Mission Campaign

Introduction

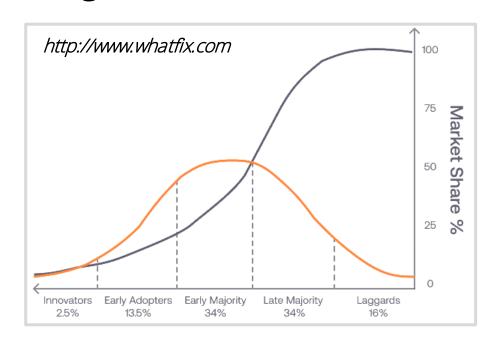
Not a shipbuilder

Our World:

- High-consequence nationalsecurity applications
- Complex, interdependent relationships
- Risk averse by nature

Advanced Manufacturing (AdvM) is not solved...

... but we have seen the patterns of modernization — where it struggles, where it sticks, and how new technology becomes trusted.


The Adoption Paradox

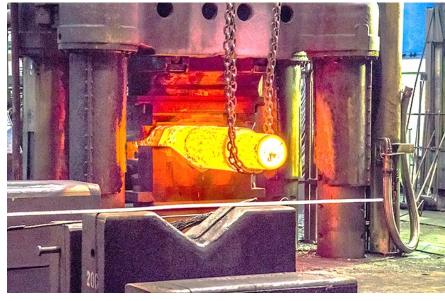
Technology is advancing faster than we are advancing trust.

 Additive • Automation • Autonomy • Smart Factory • Digital Twin · AI/ML · OMI

Defense missions need **mission grade** trust → **Assurance**

Not unique to defense:

Nuclear Deterrence can't use market share to build trust.


Adoption isn't limited by what our machines can do; it's limited by what our institutions are ready to believe.

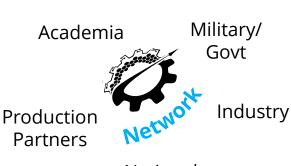
The Stakes Are High

Advanced Manufacturing addresses our most pressing problems.

Sims et al, Sandia National Labs, 2024

- Supply chain risk, from commodity to specialty materials.
 - Up to a year for large castings and forgings
 - 6 months for specialty machining
 - 4 months for simple machining
- Limited design space from slow prototyping
- Lack of verification digital tools
- Complex production and assembly

- Prototypes in weeks
- Alternate AM supply chain
- Piece part reduction
- Instrumented production for digital twin/thread
- Deployed AM for on-demand field manufacturing


Introducing CAMINO

CAMIN Center for Advanced Manufacturing & Innovation

CAMINO Resources

- Equipment
- Space
- Digital Tools
- Network
- **Funding**

National Labs

CAMINO Thrusts

- Materials
- Processes
- Integration
- Mod/Sim & Al
- **Urgent Exemplars** (Cables, Connectors, Electronics)

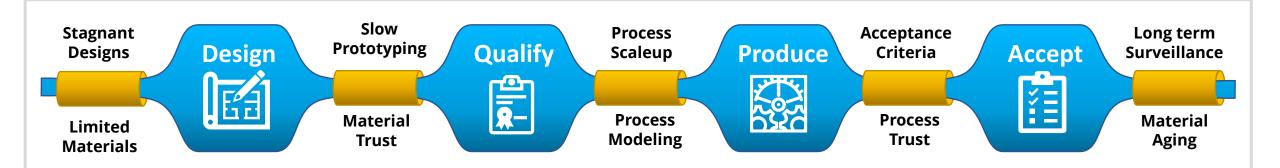
Shortened Learning Cycles Faster Prototyping Piece Part Reduction

Supply Chain Resiliency

What we need to be

good at when mission

teams seek help!


CAMINO isn't just a facility; it's infrastructure for trust — tools, space, expertise, and funding to build assurance in advanced manufacturing.

CAMINO's Role

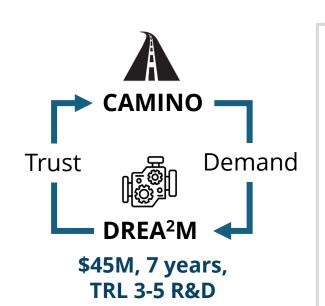
CAMINO finds and smooths friction points early.

A "machine shop" for the Mission: Tools • Prototypes • Demonstrators • Data • Expertise • R&D • Support • Collaboration

NASA Digital Twin Initiative: Real-time virtual replicas of physical objects, systems, and processes. Like with CAMINO, they find friction and rehearse failure before it happens, at data scale, not production scale.

> We use CAMINO to identify where data, tools, and trust diverge — while the cost of learning is still low.

Introducing DREA²M



DREA² Digitally Realized and Enabled Agile Advanced Manufacturing

An execution engine to build trust through AdvM R&D.

DREA²M is one engine. We need more:

DREA²M's 8 R&D challenges are created from mission demand signals

Structure Properties Performance

- 1. Rapidly Expand Material Choices
- 2. Improve Experimental Processes
- 3. Develop Predictive Models
- 4. Establish Correlations

- 5. Develop Real-Time Inspection
- 6. Create Decisional Models
- 7. Achieve Data Efficiency
- 8. Supplement the Artisan

21 projects to date: • Al, Ta, Ceramic, Inconel, SS • LPBF, Wire DED, DLP, Thin Films, energetics • Automated assembly, qualification, autonomous testing, high throughput fabrication, joining • Al inspection, PSPP surface mapping, multimaterial top-op, simulated data, feedforward control

CAMINO is the road, DREA²M is the engine. We need more of both.

Partnerships that Make It Real

Collaboration in Action (not an exhaustive list!)

Joint R&D • Internships • Print Demonstrators • CRADAs • Residencies • Training • CAMINO Council

This isn't a Sandia show. It's a team sport — national labs, production agencies, universities, and companies all have a lane here.