

Fay Collier, Ph.D.

National Aeronautics and Space Administration

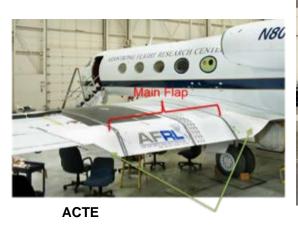
2019 Fall Meeting
Aeronautics and Space Engineering Board

Environmentally Responsible Aviation Focused research on CNR & Fuel Burn Redux (FBR)

	Integrated Technology Demonstrators 2010-16	Partner
FBR	AFC Enabled Vertical Tail and Advanced Wing Flight Experiment	Boeing
FBR	Damage Arresting Composites Demonstration (Large Scale Structural Tests)	Boeing
CNR	Adaptive Compliant Trailing Edge Flight Test (w/AFRL)	FlexSys
FBR	Highly Loaded Front Block Compressor Demonstration (WT Tests)	General Electric
CNR & FBR	2 nd Generation UHB Propulsor Integration (Design, WT Tests, w/FAA)	Pratt & Whitney
NOx	Fuel Flexible, Low NOX Combustor Integration (Design, Tests)	Pratt & Whitney
CNR	Landing Gear and Flap Edge Noise Reduction Flight Tests	Gulfstream/ Inhouse
CNR & FBR	UHB Integration on Hybrid Wing Body Aircraft (Design, WT Tests)	Boeing
CNR & FBR	Advanced Open Rotor Design and WT Testing for Low Noise	General Electric
CNR & FBR	Hybrid Wing Body Low Speed Noise Reduction WT Testing (several)	Boeing/Inhouse

ERA Databases Continue to Inform the Possible NASA CNR Efforts performed at A/C System Level

Recent A/C Assessments thru 2019	Result below Stage 4	
 Hybrid Wing Body (300 seat class) 	40.4 to 50.9 dB cum.	
 Mid Fuselage Nacelle (300 seat class) 	t class) 34.2 to 40.2 dB cum. Published Results	
 Advanced Tube and Wing (300 seat class) 	24.3 to 30 dB cum.	
 Double Bubble (150 seat class) 	9 to 15 dB cum.	
 Transonic Truss Braced Wing (150 seat class) 	Work in progress (WIP)	
 Boeing B737 Max 	WIP - Comparison w/cert data	
Boeing B787 ecoDemonstrator	WIP - Comparison w/source & cert data	


Continuous upgrades to ANOPP and ANOPP II via new and improved modules and ongoing Noise Reduction (NR) technology maturation efforts

□ Adaptive Compliant Trailing Edge (ACTE)

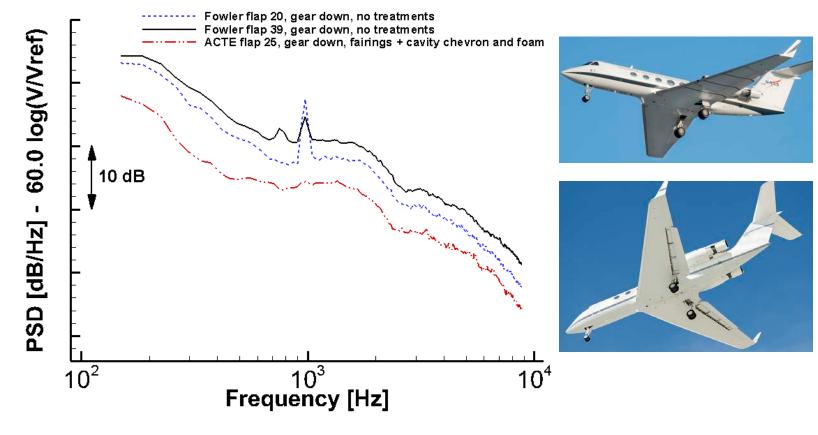
- Technology developed jointly by the U. S. Air Force Research Laboratory (AFRL), FlexSys, Inc., and the NASA ERA project
- Eliminates flap side edges and bracket assemblies

■ MLG NR Technologies

- MLG fairings
 - ➤ Upper porous knee fairing → 7,735 holes of 0.080" (2mm) diameter
 - ➤ Lower porous knee fairing → 3,597 holes of 0.080" (2mm) diameter
 - > Total of 11,332 drilled holes
- Chevron/batting plate cavity treatment
- Mesh cavity treatment

MLG fairings

Untreated MLG



Chevron/foam cavity treatment

Mesh cavity treatment

Total
Reduction
in
Airframe
Noise

Recent NR Technology Maturation Efforts Low Drag Acoustic Liner

Quiet Technology Demonstrator 3

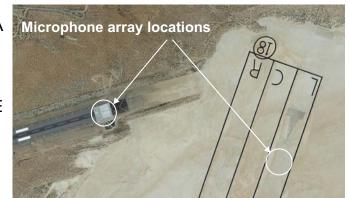
- 31 hours of total flight test time
- Half dedicated to flights over phased array located at Moses Lake, WA

Low Drag Acoustic Liner

- 7 years development time in NASA facilities
- 30 percent less drag than conventional acoustic liner
- 0.5 to 1 EPNdB aircraft level noise reduction
- Enables shorter inlets desired for adv. UHB engines

Backups

- ☐ SubsoniC Research Aircraft Testbed (SCRAT), also known by its tail number as "804"
 - Highly instrumented testbed
 - Three spanwise strips of steady pressure ports
 - Recording of aircraft parameters (e.g., true airspeed, AOA, engine settings)
 - Recording of aircraft position (GPS)


☐ Second G-III aircraft "808"

- Flown in its baseline (Fowler flaps, no gear treatments) configuration
- Except for recording of GPS data, no other instrumentation onboard
- Indicated airspeed (IAS) called out by pilots
- Acoustic data used only for preliminary assessment of baseline noise levels

- □ First flight test (Aug. Oct. 2016)
 - Conducted on a lakebed at Edwards AFB, CA (Mojave Desert)
 - > Determined engine noise contamination
 - > Assessed suitability of local weather conditions
 - Evaluate aeroacoustic performance of ACTE technology
- □ Second flight test (Aug. Oct. 2017)
 - Conducted on a lakebed at Edwards AFB
 - Evaluate acoustic performance of MLG and cavity NR concepts on 804 G-III aircraft in combination with ACTE technology
 - Accurate evaluation of gear technologies without contamination from flap noise

Overall, 47 flights and ≈ 1,100 passes over array (>90% good)

□ Third flight test (March – May 2018)

- Conducted on an inactive runway at Edwards AFB
- Acquire baseline noise data on 804
- Evaluate acoustic performance of MLG and cavity NR concepts on 804 after conversion to its original (Fowler) flap configuration
 - > Evaluation of noise reduction capability of gear technologies for conventional flaps