

NASA Aeronautics – Vision for Aviation in the 21st Century

ARMD continues to evolve and execute the **Aeronautics Strategy** https://www.nasa.gov/ aeroresearch/strategy

Safe, Efficient Growth in Global Operations

Transition to Alternative Propulsion and Energy

Innovation in Commercial Supersonic Aircraft

Commercial Transports

Ultra-Efficient

In-Time System-Wide Safety Assurance

Assured Autonomy for Aviation Transformation

U.S. leadership for a new era of flight

www.nasa.gov | 2

Research Programs Align with Strategic Thrusts

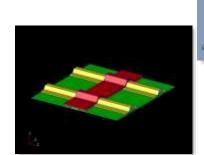
MISSION PROGRAMS

Airspace Operations & Safety

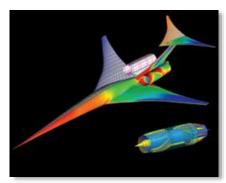
Advanced Air Vehicles

Integrated Aviation Systems

Transformative Aeronautical Concepts


SEEDLING PROGRAM

Advanced Air Vehicles Program



Cutting-edge research that will generate innovative concepts, technologies, capabilities & knowledge to enable revolutionary advances for a wide range of air vehicles.

- Advanced Air Transport Technology Project (AATT) Conducts fundamental research to improve aircraft performance & minimize environmental impacts from subsonic air vehicles
- Revolutionary Vertical Lift Technology Project (RVLT) Develops & validates tools, technologies & concepts to overcome key barriers, including noise, efficiency, & safety for vertical lift vehicles
- Advanced Composites Project (AC) Conducts research to reduce the timeline for development & certification of composite structures for aviation [Completing in early FY20]
- Commercial Supersonics Technology Project (CST) Develops tools & explores concepts for potential advanced capabilities & configurations for low boom supersonic aircraft.
- Hypersonic Technology Project (HT) Develops tools & technologies in the area of hypersonic flight

A New Era of Flight Is Emerging

Opening new aviation markets for U.S. leadership

Electrified Aircraft Propulsion

Urban Air Mobility

Commercial Supersonic Flight

Hypersonic Flight

Potential Benefits of Electrified Aircraft Propulsion

Offer improvements to highly optimized aircraft like single-aisle transports

- Significant fuel burn reduction from alternative architectures & operational schemes
- Complement benefits from improved engine cores & airframe efficiencies

Enable new VTOL configurations to transform transportation & services

Revitalize economic case for small short-range aircraft services

- Combine EAP & higher levels of autonomous operations to reduce operating costs of small aircraft
- Open access to community airports resulting in economically viable regional connectivity

Electrified Aircraft Propulsion – a 60,000 ft Perspective

UAS

Implementation Status

NASA Role

All electric vehicles in operation

NASA not needed

research

& IASP/X-57

Energy & cost efficient, short range aviation AATT/RVLT

UAM Small A/C

All electric or hybrid applications being developed

NASA focus on informing standards, regulations & design tools

Small Vehicle EAP

RJ **Single Aisle**

Potential for hybrid or turbo-electric within 10 years

NASA focus on enabling technologies, demonstrating benefits, addressing safety needs

Transport Scale EAP

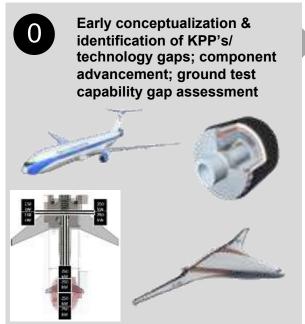
Energy & cost efficient, transport aviation

AATT/AAVP & UEST/EAP/IASP

Leverage learning at smaller size to inform scale-up

Fundamental challenges span range of sizes

Twin Aisle



Significant progress needed for practical implementation

Still too long term - not yet a NASA focus

Advancing Technical and Integration Readiness

2009-2015 **TRL 1-2** NASA in-house & NASA-sponsored university/industry efforts advancing MW motors & inverters for EAP

Ground testing of Key electrical components (work is ongoing but must accelerate)

Integrate in a flight system (likely existing airframe) leveraging experience from X-57

Flight Experiments in relevant environment

- **Key data informing** product decisions
- **Knowledge to support** certification
- Learning to inform further fundamental research

U.S. currently has a lead since we are further in ground testing, but Europeans have already committed funding to progress through flight and could move ahead if we don't act

2016-2018+ **TRL~3**

NASA in-house & industry efforts raise the TRL level of motors and inverters

2018-2020 TRL ~4

NASA in-house & industry efforts leading to ground demo of TRL 4 level end-to-end power system

2021-2023 **TRL 5-6**

Flight demo of end-to-end MW EAP power system with application to transport aircraft.

Adjacent Technology Development

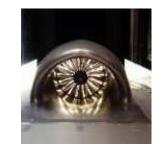
Boundary Layer Ingestion

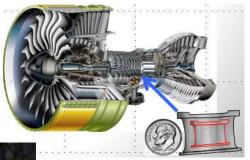
- Complementary to EAP architecture
- BLI fan successfully tested

Transonic Truss Braced Wing

- High efficiency configuration relevant for future SA market
- Subscale wind tunnel testing on-going

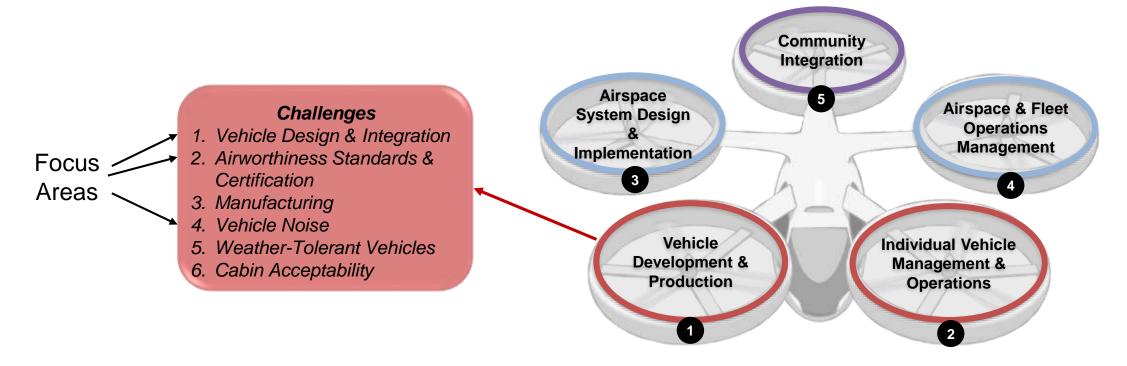
Small Core Engines


- Necessary for effective hybrid- and turbo-electric systems
- Component development underway


High Rate Composite Manufacturing

- Rate needed to enable new EAP-powered configurations
- Leverage ACP outcomes and M&S AoA

Potential to integrate with EAP in multi-tech flight demo


ww.nasa.gov | 9

UAM Vision and Framework

Urban Air Mobility (UAM) Vision

Revolutionize mobility around metropolitan areas by enabling a safe, efficient, convenient, affordable, and accessible air transportation system for passengers and cargo

NASA providing community leadership to advance safe, community-friendly UAM system integration

UAM Research Focus

eVTOL Concept Vehicles

- Pervasive technologies to focus work and conduct trade studies
- Widely shared, fully documented

Propulsion

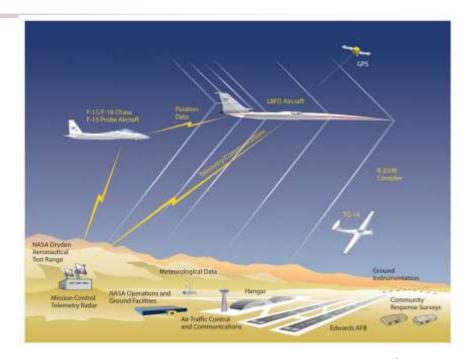
- Design/test standards & validated tools needed to support certification
- Improve electric & hybrid-electric propulsion component reliability

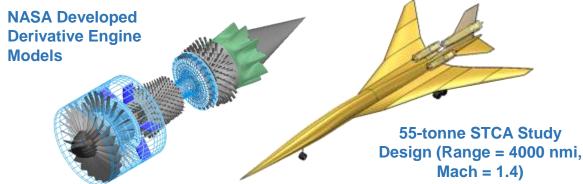
Community Noise

- Methodology for assessing noise/efficiency tradeoffs
- Assess community noise impact and explore mitigation strategies

www.nasa.gov | 11

Commercial Supersonic Flight




X-59 Low Boom Flight Demonstrator

- Aircraft Development design and fabrication
- Acoustic Validation measuring and characterizing the boom thump
- Community Response flight campaigns over representative communities and weather

Next up: LTO Noise and Emissions

- FAA and ICAO engaged in parallel, coordinated processes
- NASA supporting Supersonic Technology Concept Aeroplanes (STCA)
 - Consensus on methods and assumptions
 - Advanced procedures and technology/design trades

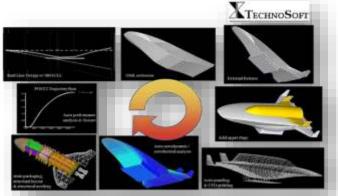
Overcoming Key Barriers to Supersonic Commercial Flight

NASA Hypersonic Research

Enable routine, reusable, airbreathing hypersonic flight

Emerging vision for future point-to-point transport

Multiple challenges but propulsion is the tallest pole


- NASA focused on mode transition between a turbine and scramjet
- Creating a design capability, not a point solution
- Recent testing shows a viable path forward

NASA leveraging advances in other communities

- NASA leveraging comprehensive DoD ground and flight tests
- High priority area where industry needs help

Unique NASA testing capability and analysis provides a National resource

www.nasa.gov | 13

Advanced Air Vehicles Program Summary

Breaking down barriers to open new markets, advance U.S. competitiveness, and make air travel better for all Americans and for people around the world

- Highly efficient electrified aircraft to make air travel cleaner, quieter, and more affordable (AATT)
- Urban air mobility to allow people to move about major population centers more easily (RVLT)
- Commercial supersonic flight to make air travel faster (CST)
- Hypersonic flight to enable a future vision for hypersonic transport (HT)