Manufacturing and Supply Chain Challenges

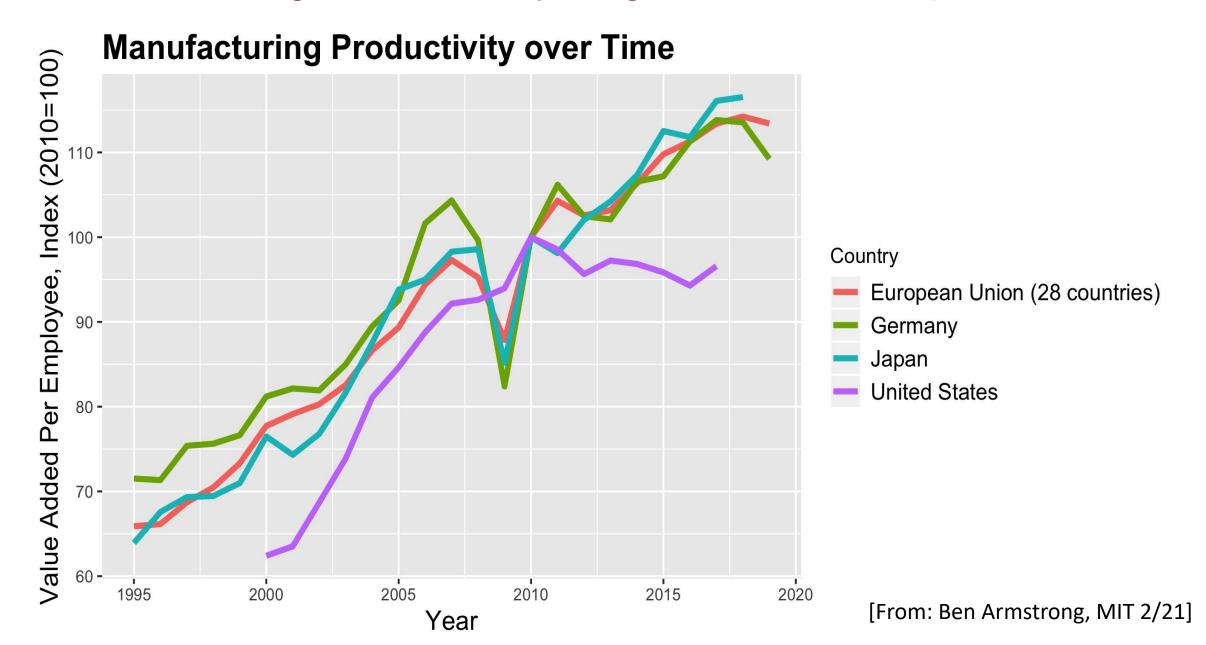
William B. Bonvillian, Lecturer, MIT, Senior Director, MIT Open Learning

National Academies of Sciences Government, University Industry Research Roundtable (GUIRR)

November 4, 2021

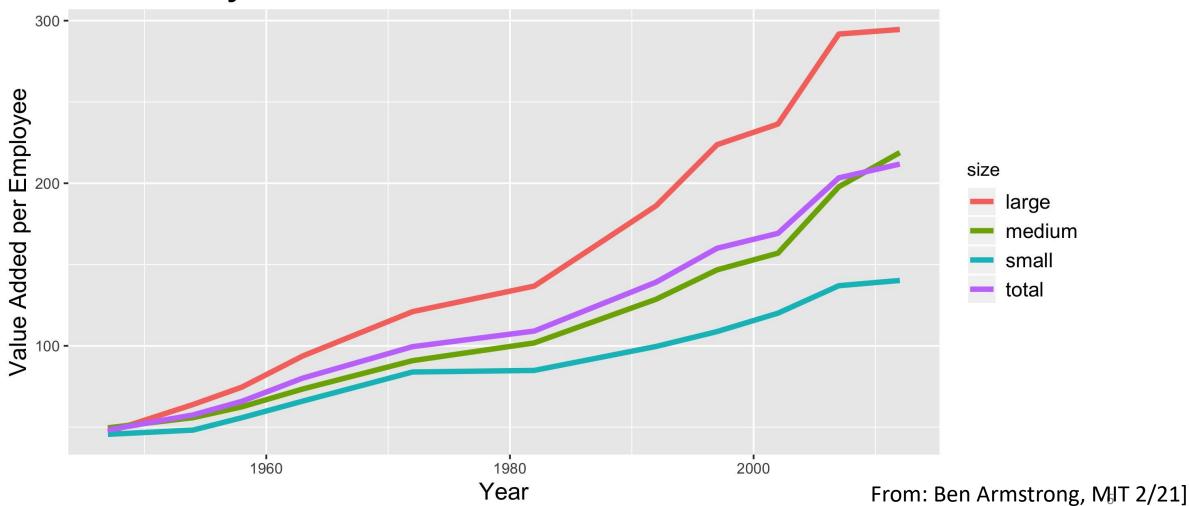
What about the supply chain?

- Major focus now on supply chain resiliency in an atmosphere of supply delays and rising demand
- BUT: unless fix the underlying manufacturing system, we face ongoing supply chain security and resilience problems over tilme
- Story below is on manufacturing, but that is a prerequisite for supply chain fixes

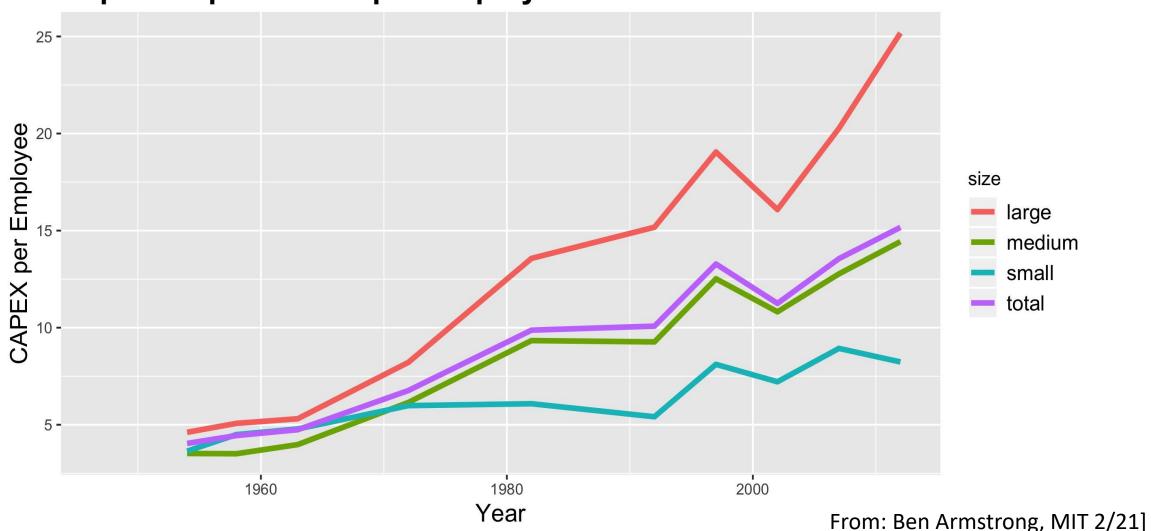

Part I – Manufacturing

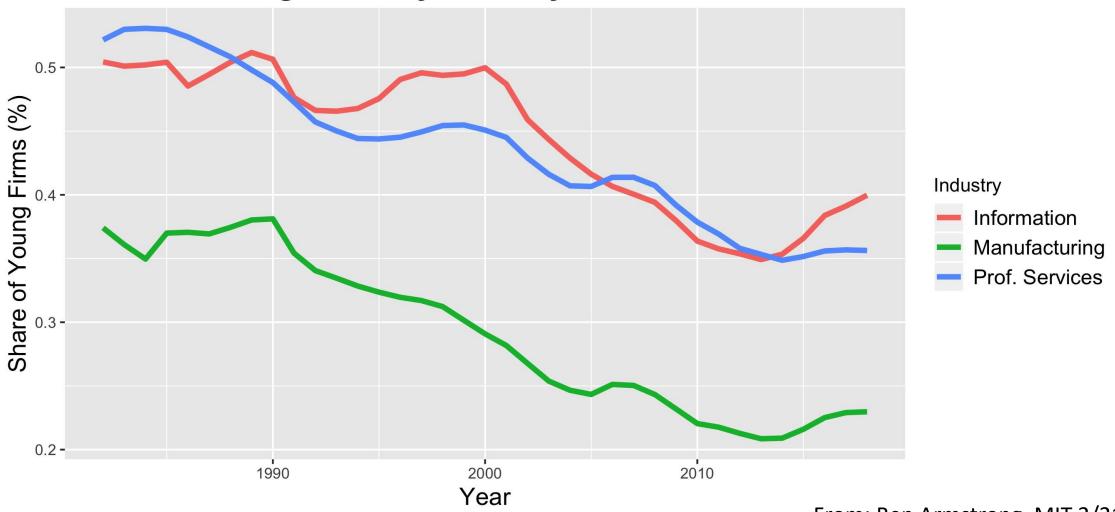
-- What is the US manufacturing problem?

The Problems Facing US Manufacturing – 4 Findings


- Finding #1: Signal from Manufacturing Job Loss
 - US lost from 2000 to 2010 one third of manufacturing jobs
 - Manufacturing output in decline in 16 of 19 sectors
 - output only recovered to 2000 levels in 2018
 - US productivity low:
 - 1995-2005: 2.5%;
 - 2005-2015: 1% range historic low
 - Capital, plant, equipment, IT investment low
 - Major trade deficit: now \$900b in mfg. goods; in adv'd mfg. tech's, jumped from \$130B to \$191B in 2019 from 2020
 - -Job loss data: signal that US manufacturing was hollowing out and facing international competition <u>Decline in</u> productivity levels: signal of innovation gap

US Manufacturing Productivity Lags Behind Competitor Nations


Small and Mid-Sized Mfg. Firms Lag in Productivity:


Productivity-related Capital Investments Stagnate at Small Mfg. Firms:

Capital Expenditures per Employee over Time

Nos. of New Entrepreneurial Firms in Decline in Manufacturing:

Share of Young Firms by Industry over Time

From: Ben Armstrong, MIT 2/21]

Finding #2: Production must be seen as part of the Innovation System

- Manufacturing not pictured in the US as part of the innovation process
 - US focus is on <u>only R&D: fragmented</u>
 <u>view</u>
 - Innovation is a system, from early-stage research through manufacturing
- treat production as critical element that must be connected to innovation system
 - or risk innovation erosion

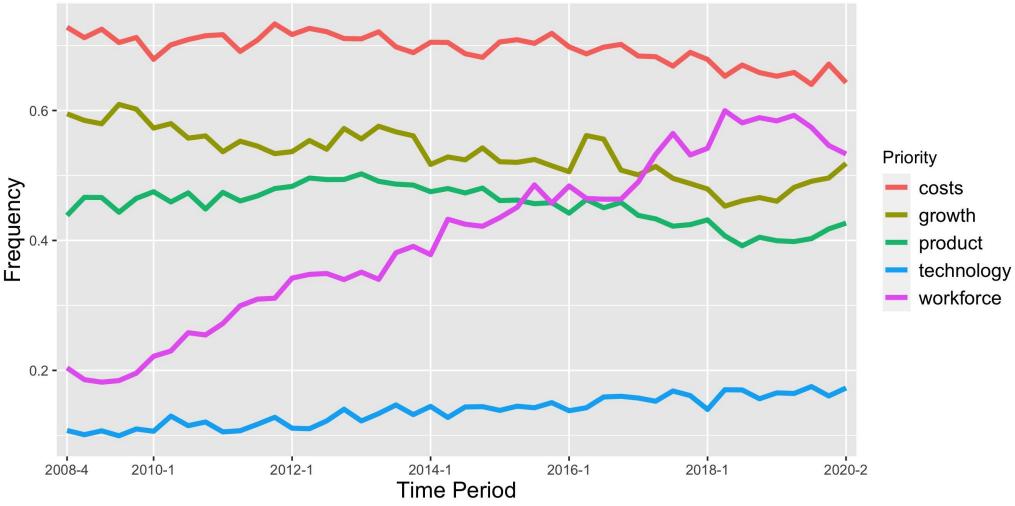
Finding #3: The Tie between Innovation and Production

- US had: <u>innovate here/produce here</u> got full spectrum of gains
- Then US did: <u>innovate here/produce there</u>
- But for <u>most products</u> need to <u>tie innovation</u> closely to initial production
 - Need dense feedback loops as you do product designinitial production requires <u>very creative</u> engineering and design – it's part of innovation
 - So if you shift production capability, in many cases innovation capability has to follow it
 - Result: *Produce there = Innovate there*
- Innovation is U.S. strong suit –what it does best
- But if many important innovations have to follow production, endangers US core innovation strength – <u>creates system gap</u>
- And Innovation is the key growth factor

Finding #4: Lessons from Germany – Illustrate U.S. System Gaps

- US thought that it had to lose manufacturing jobs to low cost producers in Asia because it was high wage.
- But Germany is <u>high wage and high cost</u> German wages and benefits are 60% higher than the U.S.
- Germany runs a major <u>manufacturing surplus</u>, including a manufacturing surplus <u>with Asian nations</u>
- Germany has a <u>deep ecosystem</u> for their manufacturers, small and large – they aren't "home alone" – <u>shows U.S.</u> gap
- Extensive collaborative R&D shared by industry- gov'tuniversities around manufacturing technologies and processes – Fraunhofer Institutes
- Shared <u>training system</u> for their workforce <u>shows U.S.</u>
- Ways to <u>link their supply chains for rapid scale</u> up
- Some German practices don't apply, some do

Gaps in the U.S. Production Innovation System = Capabilities Problem


- Signals of Gaps in Innovation System:
 - productivity low,
 - supporting ecosystem weak,
 - · scale up problem,
 - delinked innovation and production,
 - weak workforce training
 - = <u>Social Disruption</u>
 - Way out? Apply innovation system model?
 - Core idea: Create new capabilities around system innovation

<u>And</u> Manufacturing Decline = Social Disruption

- Between 2000 and 2010, U.S. <u>manufacturing</u> employment fell by 5.8 million jobs – 1/3
- Manufacturing historically important <u>middle class</u> <u>pathway</u> for the high school educated – that was hit hard
- Median income of men with high school educations or less fell by 20% between 1990 and 2013.
- Growing income split between college and noncollege educated

Workforce is a rapidly rising priority for Manufacturers

Manufacturing Priorities Over Time

Behind it all: Understanding the Hourglass ---

---- Resources, Suppliers, Components, R&D

<--- Production (12m jobs)

<--- Distribution, Sales, Life Cycle

AND: Value Chains run throughout

Part II – the Remedy

- Apply the Innovation System to the Problem
- •Fill System Gaps, build new capabilities at the national and regional levels
- •i.e., "Advanced Manufacturing"

Are:

New Manufacturing Paradigms

There new advanced manufacturing "Paradigms" -

- Idea: raise efficiency, <u>compete with lower cost economies</u>; could lead to restoration of mfg. leadership? And <u>innovation is its own reward</u>, creates new opportunities -- some examples:
- "Network centric"/Digital Production
- Advanced materials
- Nanomanufacturing
- Mass Customization
- Distribution efficiency
- Specific Technologies: Photonics, Advanced Composites, Biofabrication, Power Electronics, etc.

New Model - Advanced Manufacturing

- Advanced Manufacturing Partnership (AMP) idea:
 - From industry-univ. collaboration reports in 2012, 2014
 - Need innovation-based efficiency gains to compete with low cost/low wage nations
 - So: Apply innovation capabilities to manufacturing
 - So: New Technologies/Processes/Business Models
- One key tool: Manufacturing innovation Institutes" 16 set up
- Collaborative—industry/univ/gov't —in a way, Sematech model
 - Tech Dev. around potential new technology paradigms
 - 3D printing, digital production, robotics, photonics, advanced composites and materials, flexible electronics, cybersecurity, bio fabrication, power electronics, etc.
 - Testbed role
 - Workforce education role
 - Cost shared between: federal gov't/industry/state gov't
- ISSUE: will the Institutes and other mfg. programs like MEP get the support they need from the new Administration?

Still need work on *remaining system gaps* –

- Connecting the R&D System to the Institutes
- Creating the Network of institutes
 - Have to integrate the various technologies for entirely new production floor systems
 - need to deliver packages of workforce ed and advanced technologies for SMMs to use
- Workforce training
- Scaling-up Startups
- Financing SMMs slow in adopting new production technologies – need low cost equip. financing
 - SMMs will only adopt workforce ed when they have the new technologies and equipment on their shop floors
- Ending 5 year term limit for federal support
- Tracking progress in competitors

Part III: Conclusion

- Advanced Manufacturing
 - IDEA: Apply the still strong US Innovation System to Manufacturing
 - Manufacturing Institute model evolving
 - Innovation Systems approach
- Remember:
 - no manufacturing fix,
 - no supply chain fix