Shaping the Future Intel's Academic Collaborations

Gabriela Cruz Thompson
University Research & Collaboration
Spring 2022

We create world-changing technology that enriches the lives of every person on Earth

We are positioning Intel for sustained growth and leadership in an increasingly digital world

"The ingredient we start with is sand. Everything else is value added by people."

Andy Bryant
Former Intel Chairman

We Seek

Working With Leading Academic, Industry And Government Research Institutions

Academic Outreach: Mechanisms

Very Large Centers – Semiconductor Research Corp (SRC)

DARPA, NIST, NSF and 15 Industry Collaborators

SENSE

Large Centers – Government Collaborations

NSF

Midsize Centers – Research Innovation Pipeline

Intel Science and Technology Centers (ISTCs), Intel Collaborative Research Institutes (ICRIs), Intel Strategic Research Alliances (ISRAs)

TRANSFER

Individual Grants – Problem Solving & Business Solutions

Strategic Research Sectors (SRS), Memberships/Industrial Affiliations

Intel's Academic Mindshare

IA affinity & Community building

TALENT

Diversity Higher Education

Campus Recruiting

We Solve Key Research Focus Areas

Emerging Workloads
Al-Population Scale Data

Next Wave of Al

Al for Optimization

Knowledgeable Al

Human & Al systems

Future of Software

NSF PPoSS Machine Programming

Trust, Security, & Privacy

Fully Homomorphic Encryption

Confidential Computing

Private Al

Novel Sensing Technologies

4D Radar

Quantum

New Compute Models

Neuromorphic

Advanced Memory & Storage

Agile HW-SW Co-design

Next-gen Connectivity, 5G & Beyond

Integrated Photonics

Advancing Manufacturing Leadership

High-performance Energy-Efficient Devices

Beyond CMOS

Heterogeneous Integ.

Achieve carbon neutral computing to

Intel's Mindshare at Universities

Drive Intel's Thought Leadership Into Academia to Foster and Develop a Pipeline of Students' Savvy On Intel Technology and Monitor Technology Inflections

Encourage the use of Intel technology in the classroom

STRATEGIC UNIVERSITIES

Continuously connected with key institutions

RECOGNITION AWARDS:

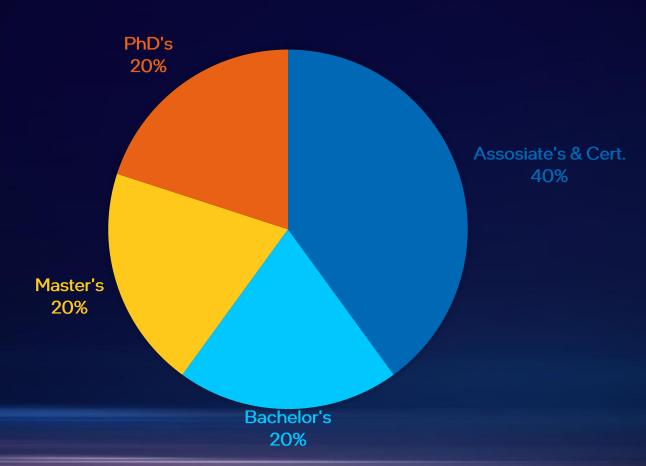
Outstanding Researcher (ORA)
Rising Star (RSA)

Faculty awards recognizing great collaborators and their connection with Intel

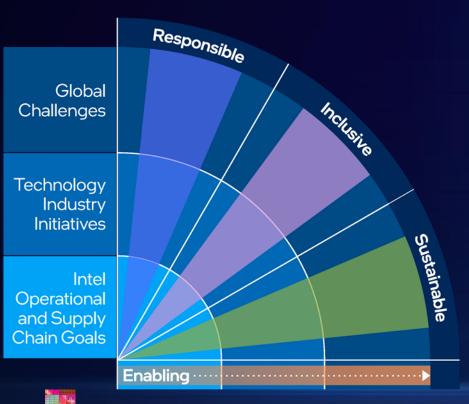
ACADEMIC COMPUTE ENVIRONMENT

Cloud computing access to Intel technology for research

UNIVERSITY SHUTTLE PROGRAM


Offer new technologies and products through the IFS in partnership with leading academics

STEM Workforce Needs



Making a Positive Impact On Society, Business, Planet

Sustainable

Responsible

Revolutionize how technology will help improve health and safety

Make technology fully inclusive and expand digital readiness

Achieve carbon neutral computing to

Accelerate the ways we enable progress

through our technology and the expertise and passion of our employees

address climate change

Q&A

intel

Our Academic Centers

Final year	Intel-NSF partnership
2020	Computer Assisted Programming for Heterogeneous Architectures – CAPA
2022	Machine Learning for Wireless Networking Systems (MLWiNS)
2022	Foundational CPU Microarchitecture - FoMR
2023	Resilient and Intelligent Next- Generation Systems (RINGS) –Start Q2'22
2025	Al Institutes for optimizations Committed, Start Q3'21
2026	PPOSS – Machine Programming
2032	Semiconductor Manufacturing and Design : Workforce and Research

Final year	Intel Science & Technology Centers (ISTCs)
2022	Next-Generation Heterogeneous 3D FPGAs for In-Network Computing
2022	Valleytronics: new promising 2D TMD materials
2023	Resilient Architectures and Robust Electronics (RARE)
2023	Integrated Photonics for Data Centers Interconnects
2024	MIT AI Data Systems (Google & Microsoft)
2024	FEINMAN: 2.0 Super Energy Efficient Devices enabled by Quantum Materials
2032	Semiconductor Education & Research for Ohio

Final year	Intel Collaborative Research Institutes (ICRIs)
2023	Intel Neuromorphic Research Community -INRC
2022	Intelligent Automated Connected Vehicles -IACV
2022	Save Automated Vehicles –SAVe
2022	Privacy Preserving ML
2023	Efficiency for very large Al Models
2024	Transformative Server Architecture

Final year	Intel Strategic Research Alliances (ISRAs)
2023	Transformative Hardware for Artificial Intelligence
2023	Frontiers of Cryptography
2023	High Contrast, Low Noise Resist Design for High NA EUV Patterning
2023	Improving Design Productivity for Domain Specific Architectures
2024	Center of Ferro-Electrics for Energy Efficiency
2024	Atomic Monolayer 2 D PMOS

Notices and Disclaimers

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

All product and service plans, roadmaps, and performance figures are subject to change without notice. Process performance parity and leadership expectations are based on performance-per-watt projections. Future node performance and other metrics, including power and density, are projections and are inherently uncertain. Learn more at www.lntel.com/ProcessInnovation.

