Kentucky Transportation Cabinet's Data-Driven Safety Analysis (DDSA) Implementation Plan

Outline

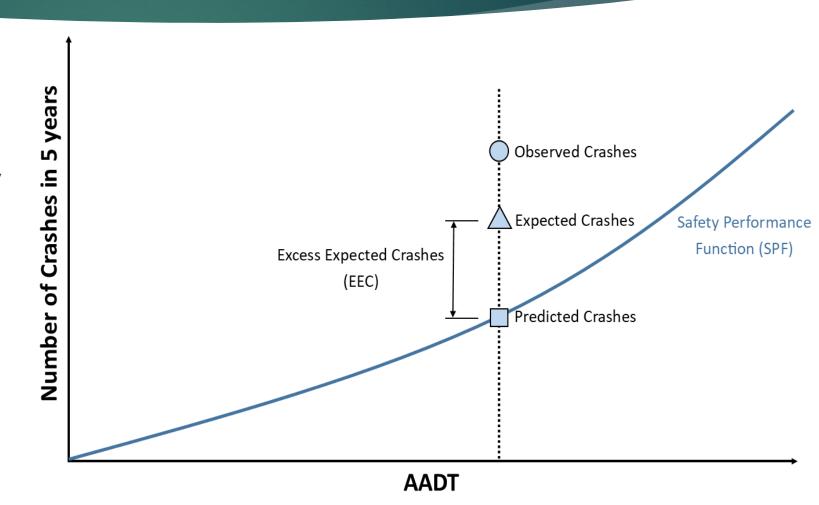
Kentucky Transportation Cabinet's (KYTC's) Inspiration

Developing and Organizing KYTC's DDSA Implementation Plan

Highlight 2 of KYTC's DDSA Tools

Outline

Kentucky Transportation Cabinet's (KYTC's) Inspiration


Developing and Organizing KYTC's DDSA Implementation Plan

Highlight 2 of KYTC's DDSA Tools

Inspiration to Develop KYTC's DDSA Implementation Plan

- Past and on-going DDSA efforts within KYTC
- ► In 2012, KY's HSIP began developing state-specific Safety Performance Functions (SPFs)
 - Applied Empirical Bayes to calculate Excess Expected Crashes (EECs)
 - Annual Network Screening to identify possible safety projects

Inspiration to Develop KYTC's DDSA Implementation Plan

- In 2016, the Division of Planning began developing the Strategic Highway Investment Formula for Tomorrow (SHIFT)
 - ▶ SHIFT uses data for 5 key attributes to prioritize projects for inclusion into KY's Highway Plan:

► EEC values are part of the scoring for the Safety attribute and Crash Modification Factors (CMFs) are part of the scoring for the Benefit/Cost attribute

Inspiration to Develop KYTC's DDSA Implementation Plan

- October 2018, NCHRP publishes the Scan Team Report for:
 - ► NCHRP 20-68A, Scan 16-01 Leading Practices in the Use of the Highway Safety Manual for Planning, Design, and Operations
- ▶ NCHRP 20-68A, Scan 16-01 was the keystone KYTC needed
 - ► How DOTs are implementing the HSM across their agencies
 - Processes, job aids/tools, and workforce training related to implementation of the HSM

Outline

Kentucky Transportation Cabinet's (KYTC's) Inspiration

Developing and Organizing KYTC's DDSA Implementation Plan

Highlight 2 of KYTC's DDSA Tools

Developing KYTC's DDSA Implementation Plan

- ▶ Identify safety champions to recruit from all Divisions
 - Planning
 - Highway Design
 - Project Delivery & Preservation (aka Construction & Maintenance)
 - Traffic Operations
 - Others:
 - Researchers at the University of Kentucky
 - ► Key staff within our District offices
 - ▶ A few safety analysis "experts" from the consulting community

Developing KYTC's DDSA Implementation Plan

- Created "sub-committees" to focus on increased DDSA implementation in key areas:
 - DDSA in Planning
 - DDSA in Highway Design
 - DDSA in Project Development & Delivery (aka Construction & Maintenance)
 - DDSA in Traffic Operations
 - DDSA Safety Analysis Tools & Training
 - ▶ KYTC DDSA webpage

Original Outline of KYTC's DDSA Implementation Plan

- Safety Data, Safety Predictions, and Safety Performance Measures
- ► Incorporating DDSA in Project Development
 - ▶ DDSA in Planning
 - DDSA in Highway Design
- Incorporating DDSA in Project Delivery & Preservation
 - ▶ DDSA in Traffic Operations
 - ▶ DDSA in Construction
 - DDSA in Maintenance
- DDSA Tools and Resources
- DDSA Training

Final Outline of KYTC's DDSA Implementation Plan

- Crash and Roadway Data
- Safety Performance
- DDSA Tools and Resources
- Implementing DDSA Methods at the Network-Level
 - How various KYTC areas could utilize network screening
- Implementing DDSA Methods at the Project-Level
 - ▶ How various KYTC areas could utilize project-specific safety prediction
- DDSA Training

Outline

Kentucky Transportation Cabinet's (KYTC's) Inspiration

Developing and Organizing KYTC's DDSA Implementation Plan

Highlight 2 of KYTC's DDSA Tools

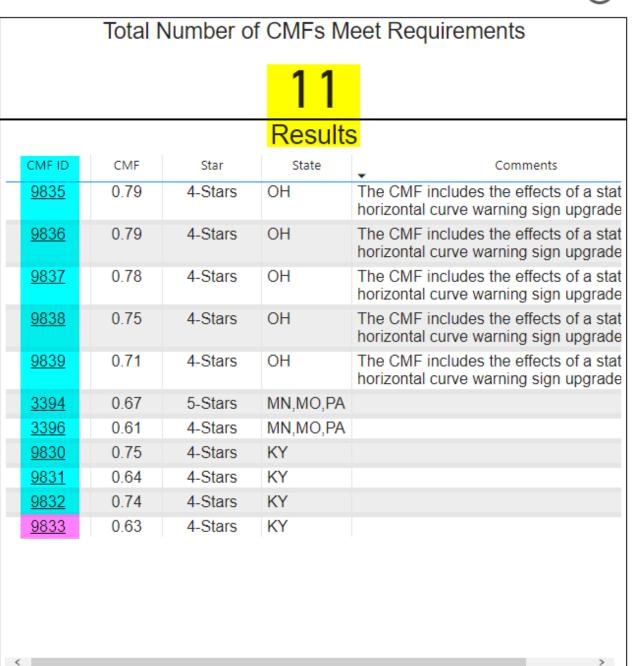
Crash Data Analysis Tool (CDAT)

- CDAT provides users with a searchable record of KY's:
 - Crash Data
 - Traffic Volumes
 - Roadway Attributes
- ► CDAT can currently be used to:
 - Obtain current Excess Expected Crash (EEC) values for predetermined roadway segments and all intersections across the network
 - ► Calculate EEC values for user-specified roadway segments

Crash Data Analysis Tool (CDAT)

- CDAT can currently be used to:
 - ► Compare site specific crash type %s with crash type %s of all similar sites
 - ► Example 1: Segment A has 65% crashes occurring on Wet Pavement vs. the Statewide avg of 20% of crashes occurring on Wet Pavement
 - ► Example 2: Segment A has 50% of crashes occurring at Nighttime vs. the Statewide avg of 25% crashes occurring at Nighttime
- CDAT features being developed:
 - Predicting safety performance for relatively simple proposed projects
- Goal for CDAT is to be a one-stop shop for:
 - Safety-related data and network screening results (aka EEC values)
 - Project-specific safety diagnosis and safety performance predictions

KYTC's CMF Search Tool


- Web-based search tool
- ▶ Users can select from up to 18 different attributes to narrow down the list of applicable CMFs:
 - Crash Type
 - Crash Severity
 - Area Type (Rural, Urban, or Suburban)
 - Number of Lanes
 - ▶ Traffic Control Type
- CMF list updates on the fly as attributes are selected
- ▶ The CMF ID in the list is a link to the CMF Details page on the CMF Clearinghouse

Kentucky Crash Modification Factor Recommendation List

CMF / CRF DETAILS

CMF ID: 9833

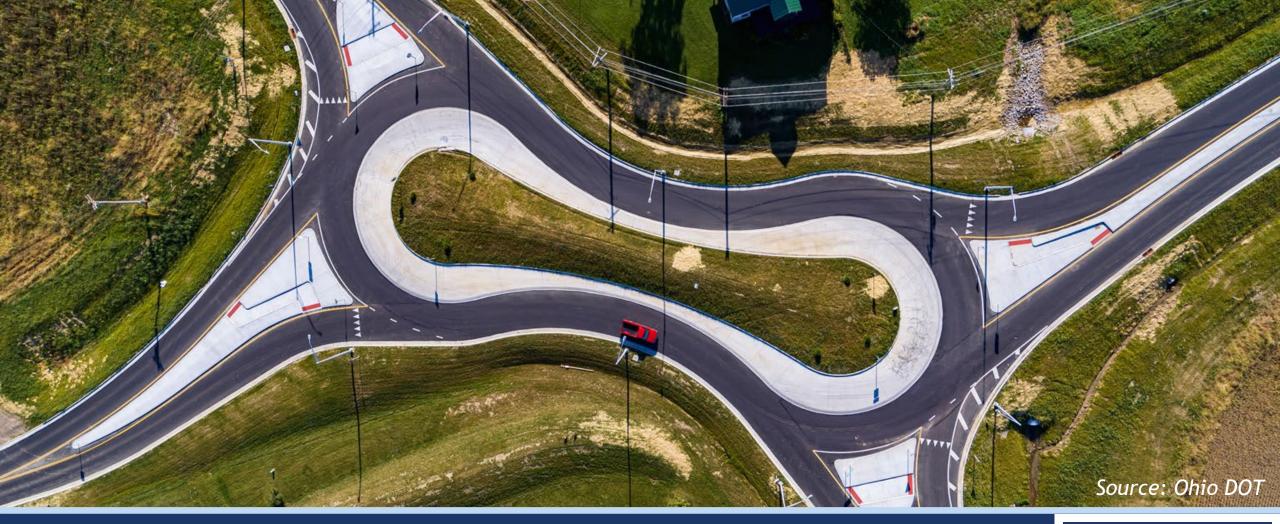
INSTALL EDGELINE RUMBLE STRIPS AT HORIZONTAL CURVE

DESCRIPTION: INSTALL EDGELINE RUMBLE STRIPS AT HORIZONTAL CURVE

PRIOR CONDITION: NO PRIOR CONDITION(S)

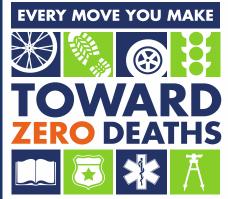
CATEGORY: ROADWAY

STUDY: SAFETY EVALUATION OF EDGE-LINE RUMBLE STRIPES ON RURAL TWO-LANE HORIZONTAL CURVES, HIMES ET AL., 2017


Star Quality Rating:	常常常量 [VIEW SCORE DETAILS]
Rating Points Total:	115

Crash Modification Factor (CMF)						
Value:	0.63					
Adjusted Standard Error:						
Unadjusted Standard Error:	0.14					

Contact Info


Michael Vaughn, PE
Highway Safety Improvement Program
Division of Traffic Operations
Kentucky Transportation Cabinet

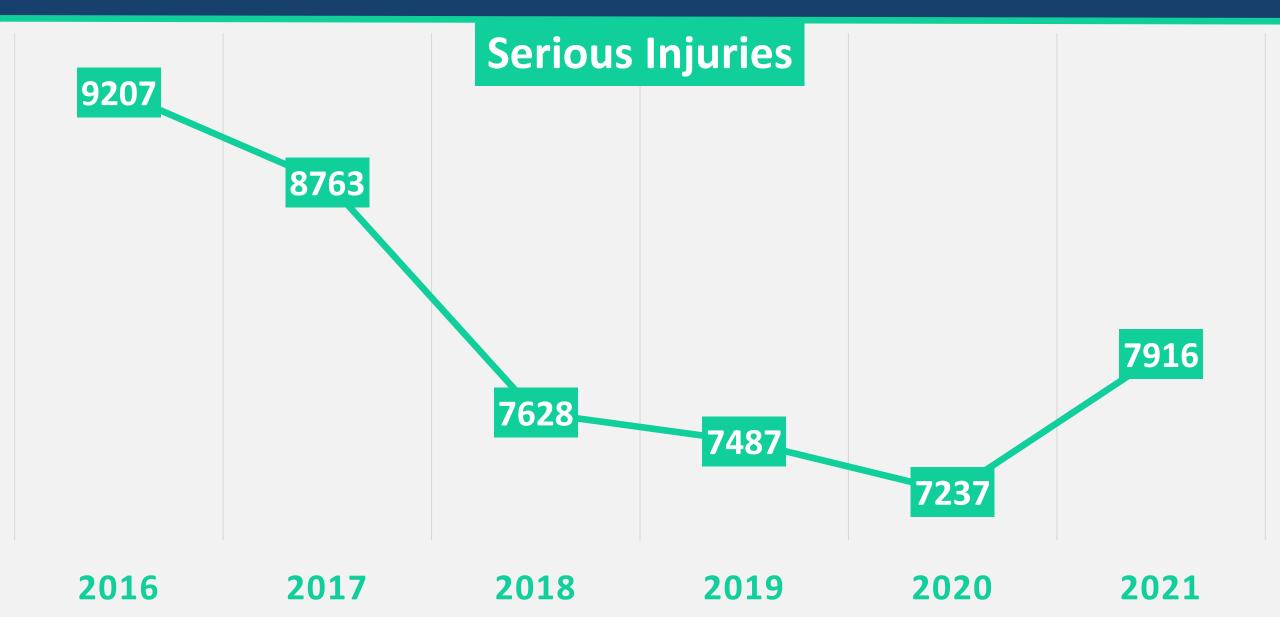
Mike.Vaughn@ky.gov

Navigating DDSA TRB - 6/28/2022

Purpose

More **Informed**Decision Making

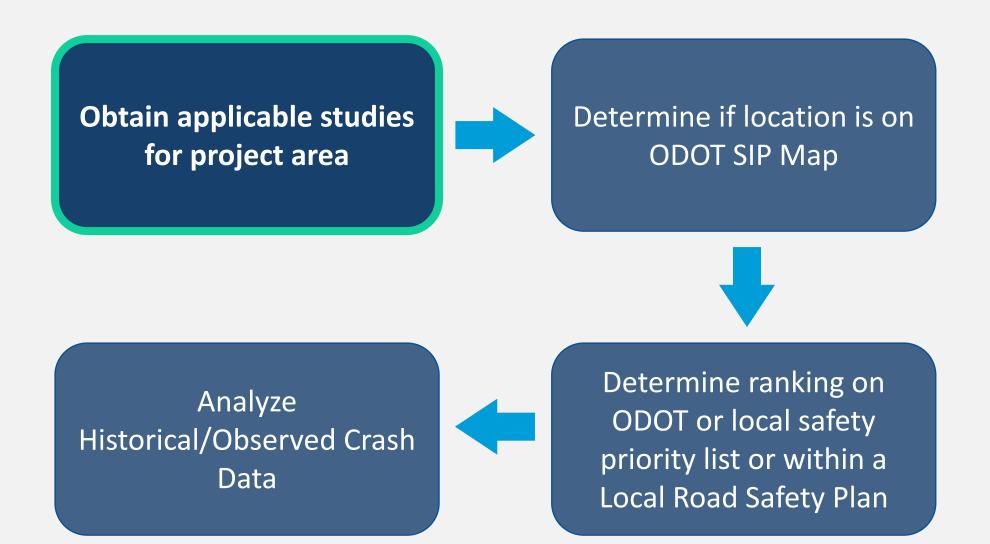
Better **Targeted**Investments



Fewer Fatalities & Serious Injuries

Why?

Why?


Application

DDSA applies to all ODOT let projects **except**:

- Maintenance projects guardrail, mowing, striping, signing, RPM's, etc.
- Minor pavement surface treatments
- Spot repairs
- Slot Paving

Minimum Assessment

Obtain Applicable Studies

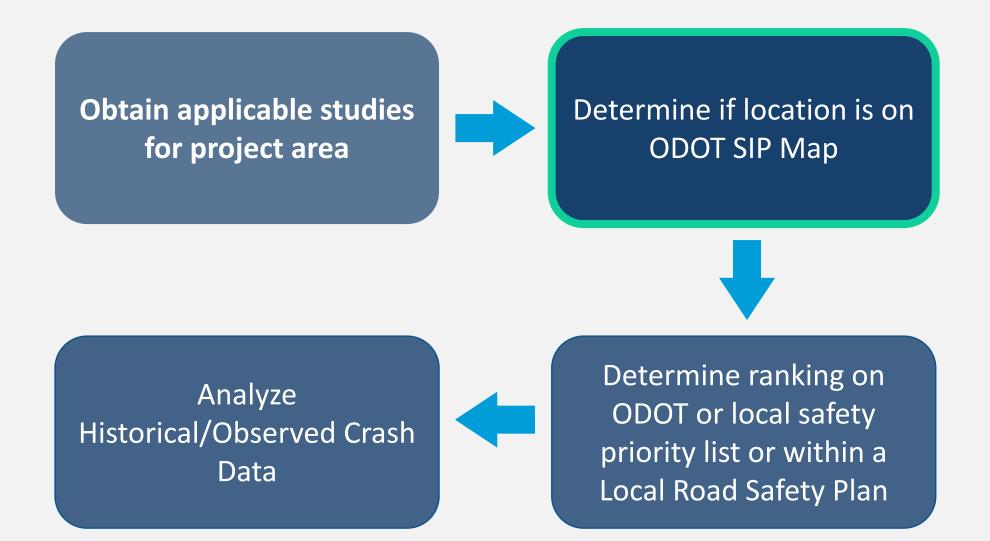
- Feasibility Studies
- Corridor Studies
- Traffic Impact Studies
- Safety Studies

Ohio Department of Transportation, District 3

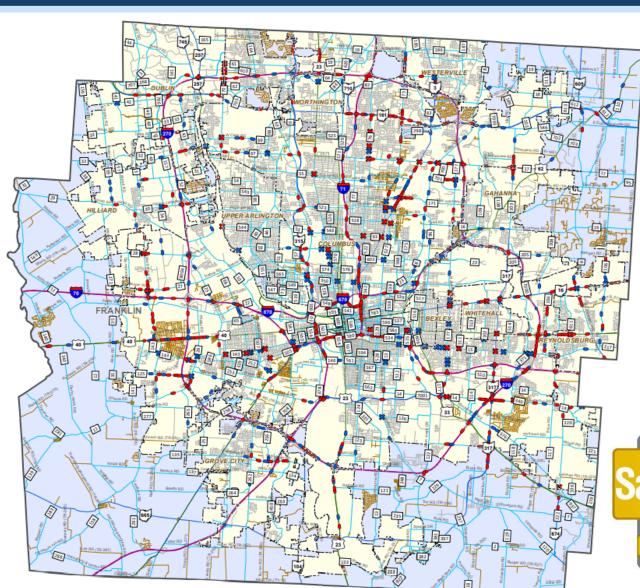
2021 Safety Study

WAY SR 57 SLM 10.32 SR 604

2020 District 3 Unsignalized Intersection List #36


By: Jared Feller, P.E.

Date: April 2021


Study Location Map

Minimum Assessment

Safety Integrated Project (SIP) Maps

City Boundary

High Priority

- Intersections/Interchanges
- Segments

Low Cost Improvements

- Intersections/Interchanges
- **Segments**

Roads by Type

- Other Routes
- Interstate Route
- United States Route
- State Route
- County Road
- Township Road

Determine Ranking

Determine if location is on ODOT SIP Map

Analyze
Historical/Observed Crash
Data

Determine ranking on ODOT or local safety priority list or within a Local Road Safety Plan

Determine Ranking

Rural

- Intersection
- Non-Freeway
- Freeway

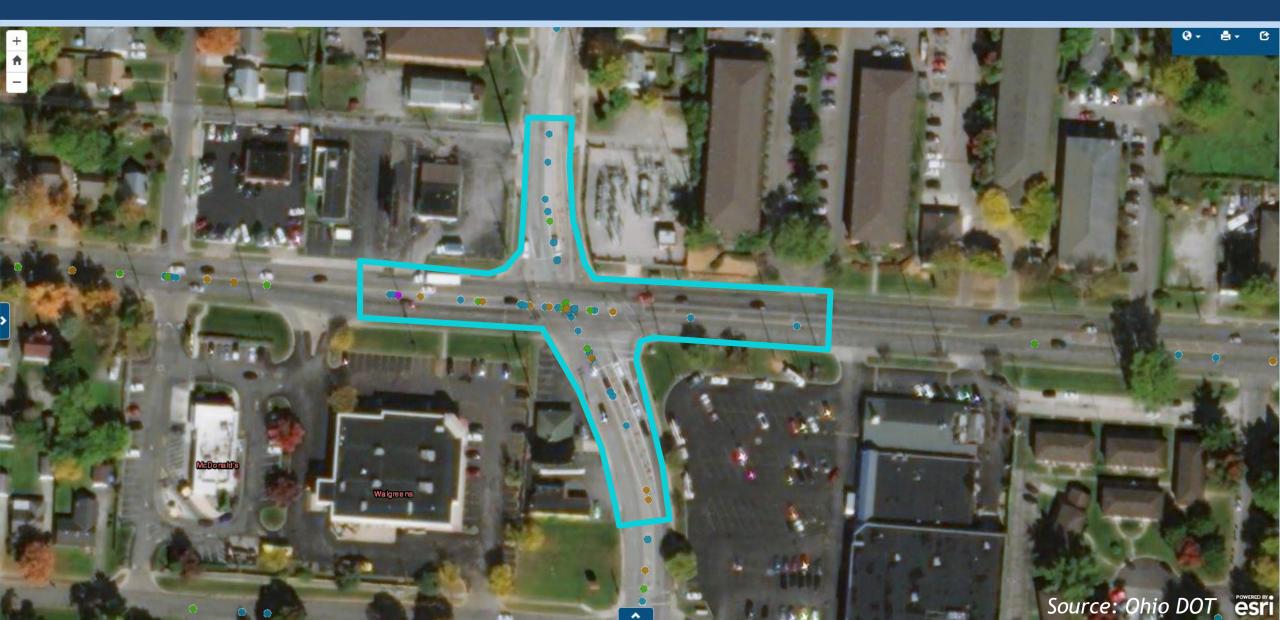
Urban

- Intersection
- Non-Freeway
- Freeway

Suburban

- Intersection
- Non-Freeway

3						Crashes Per Year Fatal & All Injury Crashes					
Rank	District	County	Location	Site Type	Subtype	Freeway	Turnpike ▲	Average Observed Crashes	Predicted Crashes	Expected Crashes	Expected Excess Crashes
1	6 F	RA	MR-4207	Intersection	Int/Urb; 4-leg signalized	N	N	53.51	2.37	25.18	22
2	6 F	RA	MR-4231	Intersection	Int/Urb; 4-leg signalized	N	N	32.79	4.83	22.44	1
3	6 F	RA	SR-317	Intersection	Int/Urb; 4-leg signalized	N	N	27.12	3.3	21.21	1
4	6 F	RA	CR-17	Intersection	Int/Urb; 4-leg signalized - Div Multilane	N	N	22.98	5.25	20.07	1
5	6 F	RA	MR-4231	Intersection	Int/Urb; 4-leg signalized - Div Multilane	N	N	27.68	5.69	20.05	1
6	6 F	RA	CR-75	Intersection	Int/Urb; 4-leg signalized	N	N	20.73	2.94	17.93	
7	7 N	1OT	CR-230	Intersection	Int/Urb; 4-leg signalized - Div Multilane	N	N	22.74	3.29	16.83	
8	6 F	RA	MR-4231	Intersection	Int/Urb; 4-leg signalized	N	N	29.46	3.01	16.57	
9	7 N	1OT	MR-4972	Intersection	Int/Urb; 4-leg signalized	N	N	36.07	2.1	16.36	:
10	6 F	RA	MR-4231	Intersection	Int/Urb; 3-leg signalized - Div Multilane	N	N	20.84	5.55	14.81	
11	6 F	RA	SR-16	Intersection	Int/Urb; 4-leg signalized	N	N	19.35	2.97	14.75	- :
12	6 F	RA	MR-4207	Intersection	Int/Urb; 4-leg signalized	N	N	31.75	1.86	14.65	:
13	6 F	RA	MR-4205	Intersection	Int/Urb; 4-leg signalized	N	N	24.86	2.74	14.01	:
14	6 F	RA	MR-4205	Intersection	Int/Urb; 4-leg signalized	N	N	24.36	2.76	13.73	
15	6 F	RA	US-62	Intersection	Int/Urb; 4-leg signalized	N	N	20.15	2.06	13.69	- :
16	2 L	UC	SR-2	Intersection	Int/Urb; 4-leg signalized	N	N	15.68	1.93	12.89	


Determine if location is on ODOT SIP Map

Analyze
Historical/Observed Crash
Data

Determine ranking on ODOT or local safety priority list or within a Local Road Safety Plan

HYPERLIN V Document V Ye V Local Report Num V User Defin V	Severity ▼ Crash Type ▼	ODOT Dists -	C	ODOT Crash Location •	NLFID 3	County True L V St	ata Taua II a	On Road 🔻	At Dood - C	DOT 1 -444.	ODOT Longitu •
					MFRAMR04254**C		ate 11ue t <u>.*</u> 761		E LIVINGSTON 3		-82.915597
·	, ,			Not An Intersection	MFRAMR04254**C		74		S LIVINGSTON 3		-82.915409
•					MFRAMR04254**C		774		S JAMES RD 3		-82.915645
- ,	(-)	-		Four-Way Intersection Not An Intersection	MFRAMR04254**C		75			39.946734	-82.915503
	.,,				MFRAMR04254**C		75		E LIVINGSTON 3		-82.915503
•	of the entering at tour End			Four-Way Intersection	MFRAMR04254**C		75		E LIVINGSTON 3		-82.915503
•	(5) PDO/No Inju Rear End			Not An Intersection Not An Intersection	MFRAMR04254**C		774			39.947064	-82.915645
	(5) PDO/No Inju Sideswipe - Passing	-					75				
	cy	_		Four-Way Intersection	MFRAMR04254**C				E LIVINGSTON 3		-82.915503
				Four-Way Intersection	MFRAMR04207**0		242			39.946872	-82.915681
	in injury i ocon zon rum			Four-Way Intersection	MFRAMR04207**0		247		S JAMES RD 3		-82.915593
	(5) PDO/No Inju Sideswipe - Passing				MFRAMR04254**C		74		E LIVINGSTON 3		-82.915409
	(a) . D a			Four-Way Intersection	MFRAMR04207**C		245		S JAMES RD 3		-82.915628
	cy			Four-Way Intersection	MFRAMR04207**0		252		S JAMES RD 3		-82.915501
	of the office injurious End	_		Not An Intersection	MFRAMR04254**C		774		E LIVINGSTON 3		-82.915645
•	o) i Donito injartigiti raini			Four-Way Intersection	MFRAMR04254**C		774		E LIVINGSTON 3		-82.915645
	(5) PDO/No Inju Sideswipe - Passing			Four-Way Intersection	MFRAMR04254**C		774		E LIVINGSTON 3		-82.915645
	(a) . D a			Four-Way Intersection	MFRAMR04254**C		761		E LIVINGSTON 3		-82.915596
,	(-)			Four-Way Intersection	MFRAMR04254**C		759		E LIVINGSTON 3		-82.915586
	of the entre injure on turn			Four-Way Intersection	MFRAMR04207**0		247		S JAMES RD 3		-82.915593
	in injury i occini occornani			Four-Way Intersection	MFRAMR04207**0		248			39.946865	-82.915574
	5) PDO/No Inju Rear End			Four-Way Intersection	MFRAMR04254**C		774		E LIVINGSTON 3		-82.915645
•	5) PDO/No Inju Sideswipe - Passing	-		Four-Way Intersection	MFRAMR04254**C		76		E LIVINGSTON 3		-82.915593
	.,	_		Not An Intersection	MFRAMR04254**C		759		E LIVINGSTON 3	39.946856	-82.915586
				Four-Way Intersection	MFRAMR04207**0		247			39.946866	-82.915593
Crash Report 20193000292 2019 190009116 (4) Injury Possil Right Turn			Not An Intersection	MFRAMR04254**0		722	MR4254	S James RD 3	39.946293	-82.915267
Crash Report 20193000301 2019 190009502	(4) Injury Possil Rear End			Not An Intersection	MFRAMR04207**0		239		S James RD 3	39.946875	-82.915741
Crash Report 20193001992 2019 190012191 (5) PDO/No Inju Left Turn	6	FRA	Not An Intersection	MFRAMR04254**0		796		E LIVINGSTON 3		-82.915663
Crash Report 20193002515 2019 190025960 (5) PDO/No Inju Sideswipe - Passing	6	FRA	Not An Intersection	MFRAMR04254**0	1.783	783	MR4254	E LIVINGSTON 3	39.947195	-82.91568
Crash Report 20193029657 2019 190162892 (5) PDO/No Inju Sideswipe - Passing	6	FRA	Not An Intersection	MFRAMR04207**0	1.211 1.	211	MR4207	S James RD 3	39.946907	-82.916268
Crash Report 20193029824 2019 190161920 ((5) PDO/No Inju Rear End	6	FRA	Not An Intersection	MFRAMR04254**0		755	MR4254	S James RD 3	39.9468	-82.915548
Crash Report 20186058780 2018 180288372	5) PDO/No Inju Sideswipe - Passing	6	FRA	Four-Way Intersection	MFRAMR04254**0	1.75	75	MR4254	E LIVINGSTON 3	39.946734	-82.915503
Crash Report 20186058911 2018 180259703	5) PDO/No Inju Rear End	6	FRA	Four-Way Intersection	MFRAMR04207**0	1.253	253	MR4207	S JAMES RD 3	39.94686	-82.915482
Crash Report 20186097875 2018 180488678	5) PDO/No Inju Sideswipe - Passing	6	FRA	Not An Intersection	MFRAMR04207**C	1.224 1.	224	MR4207	BRICE RD 3	39.946892	-82.916017
Crash Report 20186169095 2018 180893172	5) PDO/No Inju Sideswipe - Passing	6	FRA	Not An Intersection	MFRAMR04254**C	1.759 1.	759	MR4254	E LIVINGSTON 3	39.946856	-82.915586
Crash Report 20193048250 2019 P190252199 (5) PDO/No Inju Sideswipe - Passing	6	FRA	Four-Way Intersection	MFRAMR04254**C		759	MR4254	E LIVINGSTON 3	39.946856	-82.915586
Crash Report 20186203733 2018 181028193 (5) PDO/No Inju Sideswipe - Passing	6	FRA	Not An Intersection	MFRAMR04207**0	1.247	247	MR4207	S JAMES RD 3	39.946866	-82.915591
Crash Report 20186205415 2018 181024325 (5) PDO/No Inju Backing	6	FRA	Shared-Use Paths Or Trails	MFRAMR04207**C	1.21 1.	21	MR4207	WALGREENS 3	39.946908	-82.916285
Crash Report 20193009452 2019 190055279	5) PDO/No Inju Rear End	6	FRA	Not An Intersection	MFRAMR04254**0	1.734	734	MR4254	E LLIVINGSTOR	39.946516	-82.915355
Crash Report 20193067419 2019 190253318 (2) Serious Injur Pedestrian	6	FRA	Not An Intersection	MFRAMR04254**0	1.759 1.	759	MR4254	E LIVINGSTON 3	39.946856	-82.915586
	-	6	FRA	Not An Intersection	MFRAMR04254**0	1.76	76	MR4254	LIVINGSTON A	39.946863	-82.91559
	, , ,	6	FRA	Not An Intersection	MFRAMR04254**0	1.704	704	MR4254	DOVER RD 3	39.946081	-82.91528

Crashes by Crash Type									
	То	tal (%)	Fatal & All Injury (%)						
Crash Type	Site Average	Statewide Average	Site Average	Statewide Average					
Unknown	0.70%	0.23%	0.70%	0.15%					
Head On	4.26%	1.63%	4.26%	3.16%					
Rear End	36.17%	39.17%	36.17%	40.14%					
Backing	1.42%	2.59%	1.42%	0.74%					
Sideswipe - Meeting	0.00%	0.87%	0.00%	0.82%					
Sideswipe - Passing	23.40%	13.23%	23.40%	6.16%					
Angle	13.48%	8.78%	13.48%	11.31%					
Parked Vehicle	0.00%	2.49%	0.00%	1.33%					
Pedestrian	4.96%	1.29%	4.96%	4.16%					
Animal	0.00%	2.50%	0.00%	0.50%					
Train	0.00%	0.01%	0.00%	0.02%					
Pedalcycles	0.00%	0.90%	0.00%	2.64%					
Other Non-Vehicle	0.00%	0.00%	0.00%	0.00%					
Fixed Object	1.42%	6.36%	1.42%	7.63%					
Other Object	0.00%	0.23%	0.00%	0.10%					
Falling From Or In Vehicle	0.00%	0.00%	0.00%	0.00%					
Overturning	0.00%	0.17%	0.00%	0.45%					
Other Non-Collision	0.00%	0.36%	0.00%	0.35%					
Left Turn	11.35%	15.12%	11.35%	17.74%					
Right Turn	2.84%	4.07%	2.84%	2.60%					

OHIO SHSP EMPHASIS AREAS (Total Crashes)									
	2021	2021	2020	2020	2019	2019	2018	2018	
Target Group	Crashes	% of Total Crashes							
Total Crashes by Year	19		36		49		37		
Roadway Departure	1	5%	2	6%	0	0%	0	0%	
Intersection	16	84%	31	86%	38	78%	27	73%	
Railroad Crossing	0	0%	0	0%	0	0%	0	0%	
Alcohol Related Involvement	1	5%	0	0%	1	2%	1	3%	
Restraints Not Used Driver/Occupants	2	11%	1	3%	1	2%	3	8%	
Speed Related Involvement	3	16%	5	14%	2	4%	2	5%	
Young Driver Involvement (15-25)	6	32%	13	36%	16	33%	9	24%	
Older Driver Involvement (65+)	3	16%	6	17%	8	16%	7	19%	
Distracted Drivers	0	0%	1	3%	0	0%	3	8%	
Motorcycle Driver/Passenger	0	0%	1	3%	0	0%	0	0%	
Pedestrian Involvement	0	0%	2	6%	3	6%	2	5%	
Bicycle Involvement	0	0%	0	0%	0	0%	0	0%	
Work Zone Related	3	16%	5	14%	4	8%	0	0%	
Drug Related Involvement	0	0%	1	3%	0	0%	1	3%	
Marijuana Involvement	0	0%	0	0%	0	0%	0	0%	
Rear End	7	37%	13	36%	14	29%	17	46%	

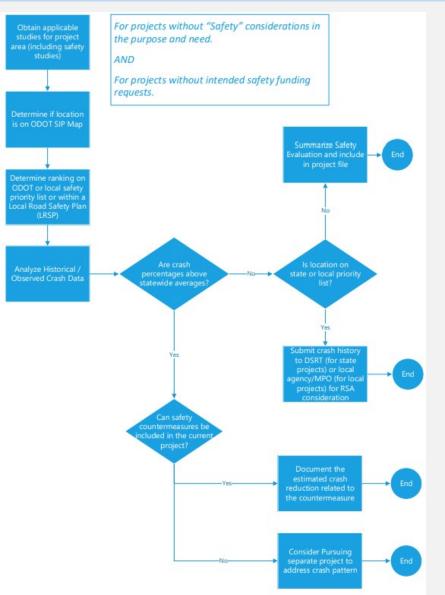
Minimum Assessment

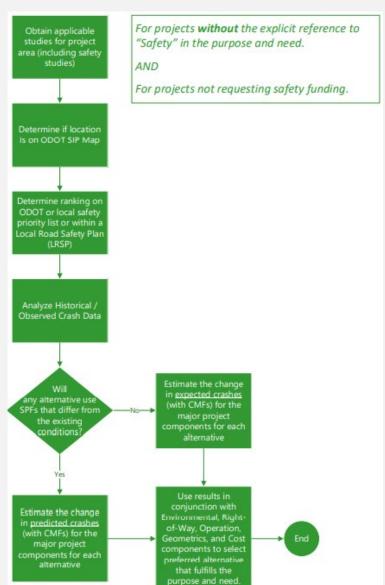
Determine if location is on ODOT SIP Map

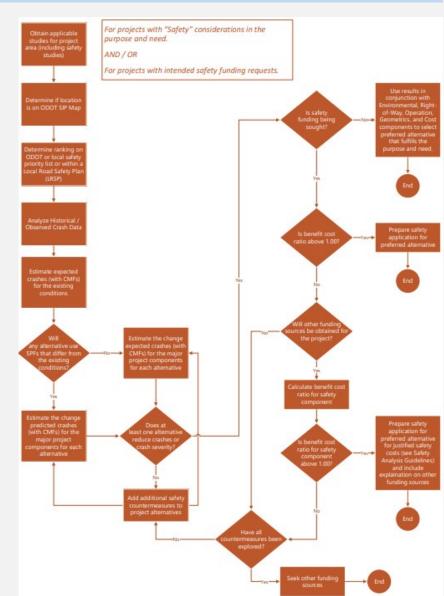
Analyze
Historical/Observed Crash
Data

Determine ranking on ODOT or local safety priority list or within a Local Road Safety Plan

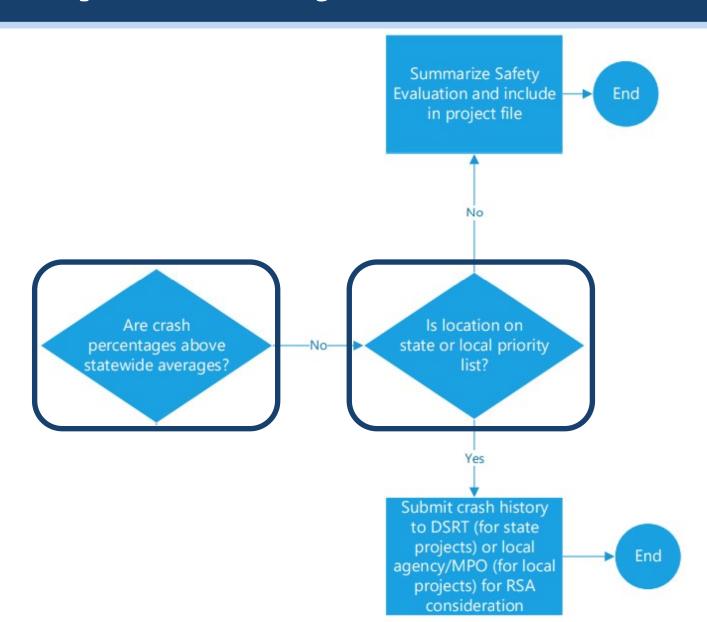
Safety Assessment Process

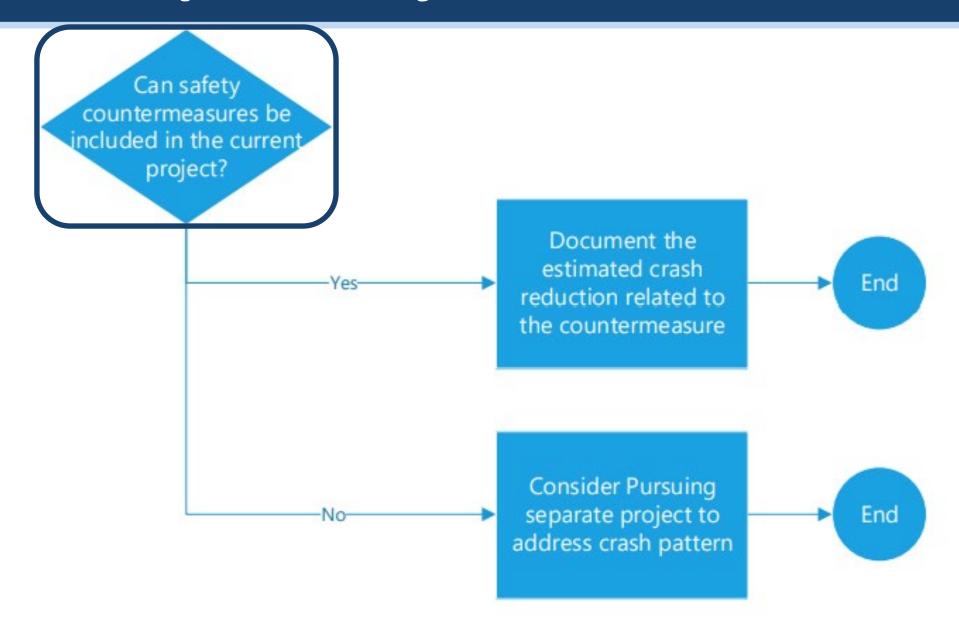

Non-Complex
Project
Assessment
(No Alternative
Analysis)

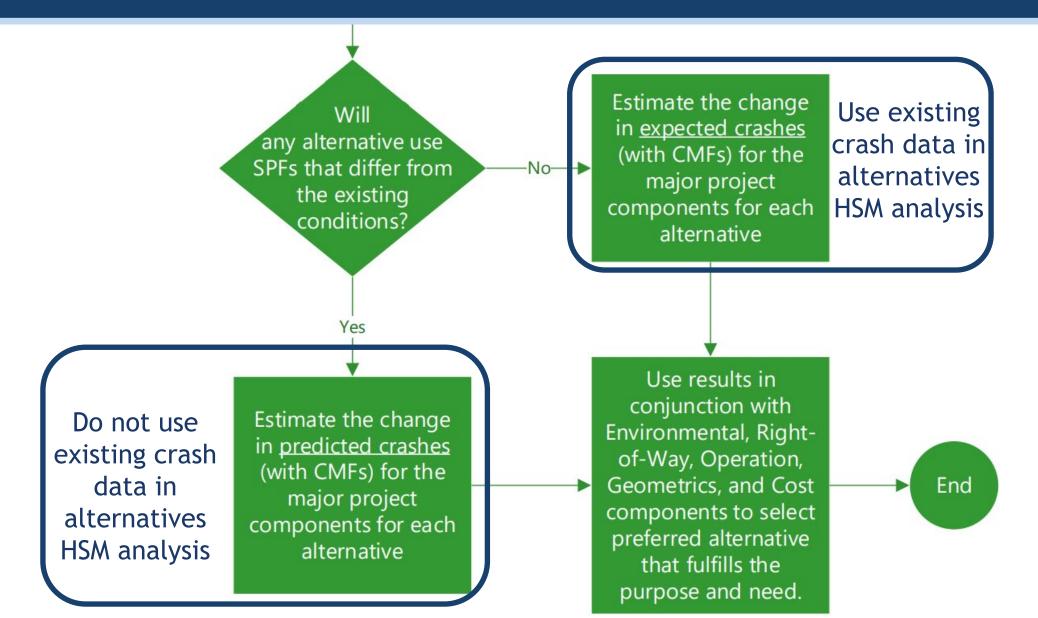

Complex Project
Assessment
without Safety in
the Purpose &
Need Statement


Complex Project
Assessment with
Alternative
Analysis and
Safety Component

Safety Assessment Process






	Projec	t Safety A	nalysis Checklist			
		Non-Comp	lex Projects			
		General Ir	nformation			
Project Name		PID				
Project Description			ODOT District			
Project Description			ODOT Project Manager			
Project Limits			Date Performed			
		Priorit	ty Lists			
ODOT SIP Map						
	L	ist	Ranking	Location		
Priority List Rankings						
		Historical	Crash Data			
Crash Analysis Years			Total Crash Frequency			
Fatal Crash Frequency			Injury Crash Frequency			
Historical Crash Analysis						
		DDSA I	Process			
Are crash frequencies above statewide averages?						
Data forwarded for RSA consideration?						
Can safety countermeasures be included in the current project?						

Complex Projects (No Safety Component)

Complex Projects (No Safety Component)

Complex Projects (No Safety Component)

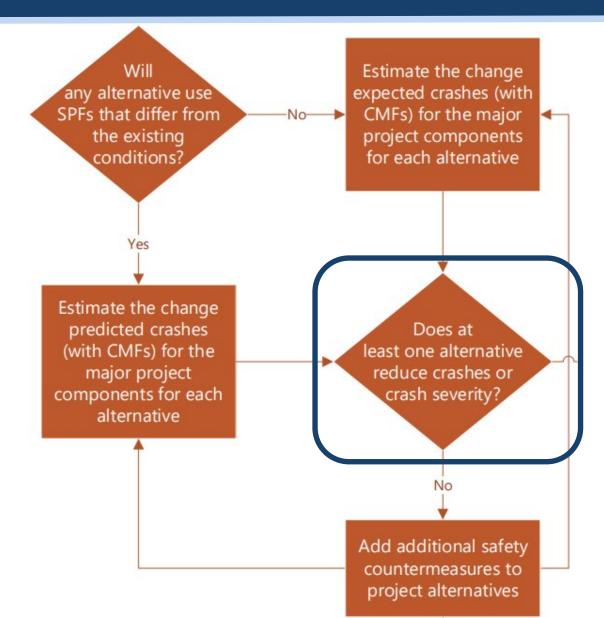
Project Safety Analysis Checklist Complex Projects (Alternatives Analysis) with Safety Component					
	General Information				
Project Name		PID			
Broject Description		ODOT District			
Project Description		ODOT Project Manager			
Project Limits		Date Performed			

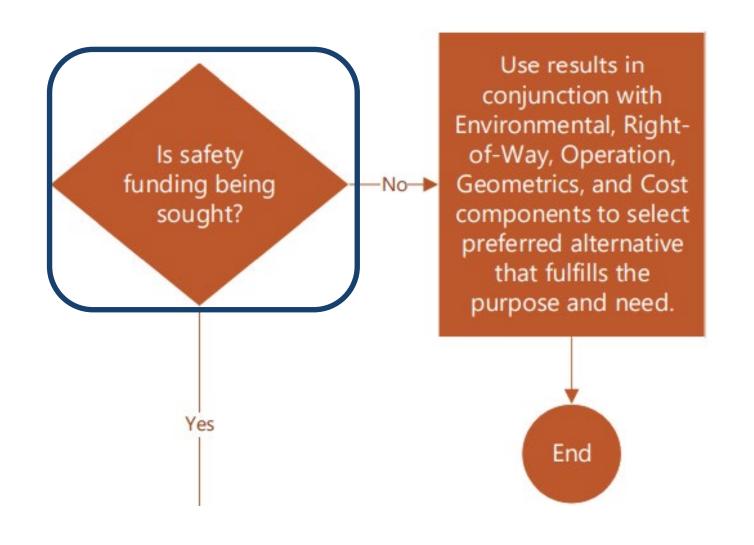
Priority Lists					
ODOT SIP Map					
Priority List Rankings	List	Ranking	Location		

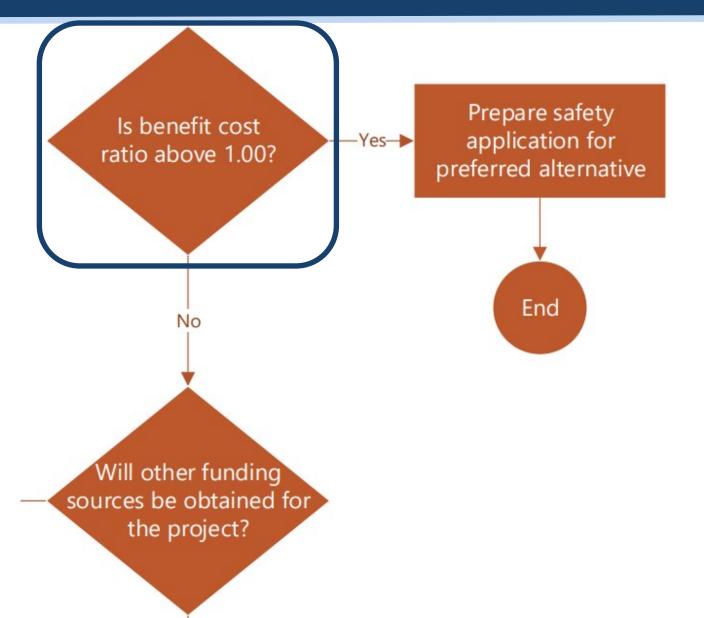
Historical Crash Data						
Crash Analysis Years Total Crash Frequency						
Fatal Crash Frequency		Injury Crash Frequency				

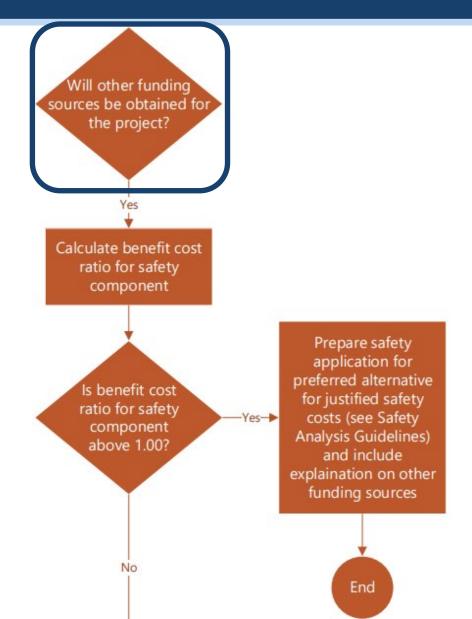
Historical Crash Analysis

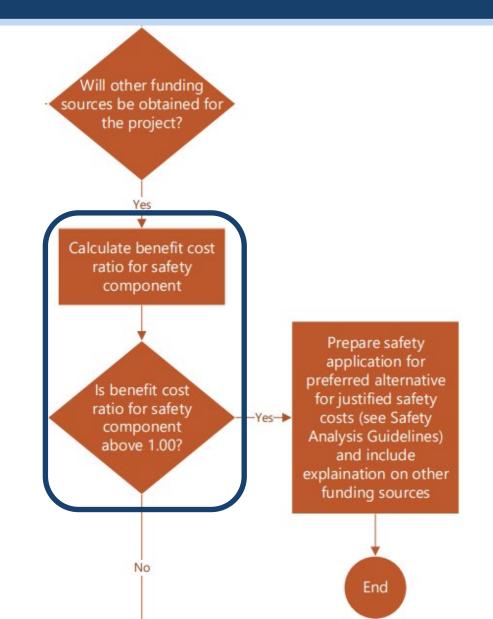
Complex Projects (No Safety Component)

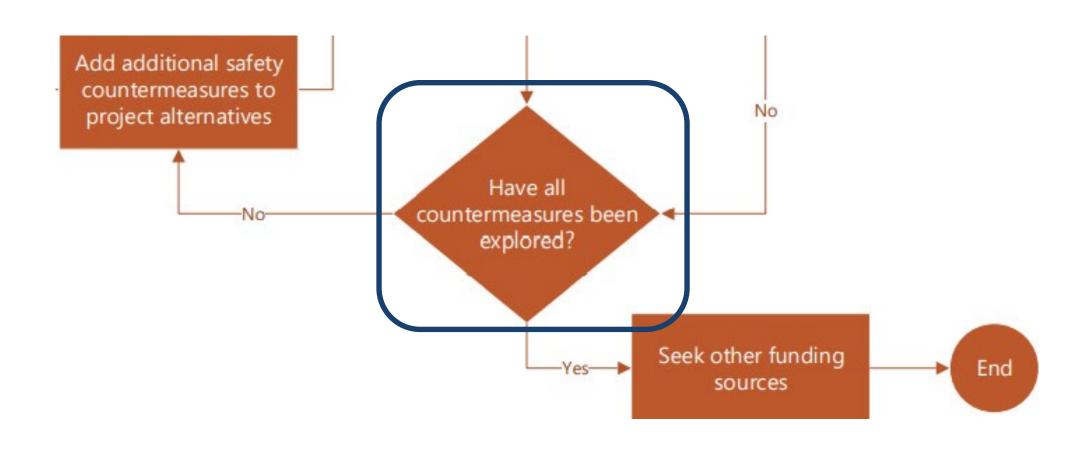

		DDSA P
Will any alternative use SPFs that differ from existing conditions?		
Estimate the change in	Expected	Crashes


ECAT FOR EXISTING CONDITIONS		KA	В	С	0	Total
Predicted	Existing Conditions					
Expected	Existing Conditions					
PSI	Existing Conditions					
Expected	Alternative 1					


Applying for safety funding? (If YES, attach safety funding application)	Other funding sources:
Will funding sources other than safety be obtained?	




孠



早

Complex Projects with Safety Component

Project Safety Analysis Checklist Complex Projects (Alternatives Analysis) with Safety Component						
General Information						
Project Name		PID				
Project Description		ODOT District				
		ODOT Project Manager				
Project Limits		Date Performed				

Priority Lists					
ODOT SIP Map					
Priority List Rankings	List	Ranking	Location		

Historical Crash Data						
Crash Analysis Years Total Crash Frequency						
Fatal Crash Frequency Injury Crash Frequency						

Historical Crash Analysis

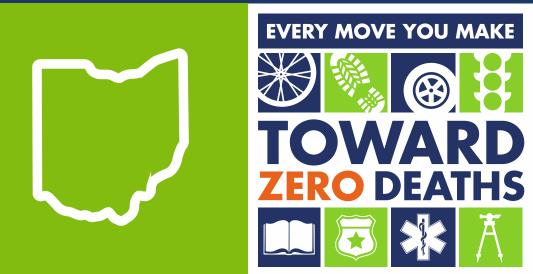
ECAT FOR EXISTING CONDITIONS		KA	В	С	0	Total
Predicted	Existing Conditions					
Expected	Existing Conditions					
PSI	Existing Conditions					
Expected	Alternative 1					

Applying for safety funding? (If YES, attach safety funding application)	Other funding sources:
Will funding sources other than safety be obtained?	

DDSA

Non-Complex

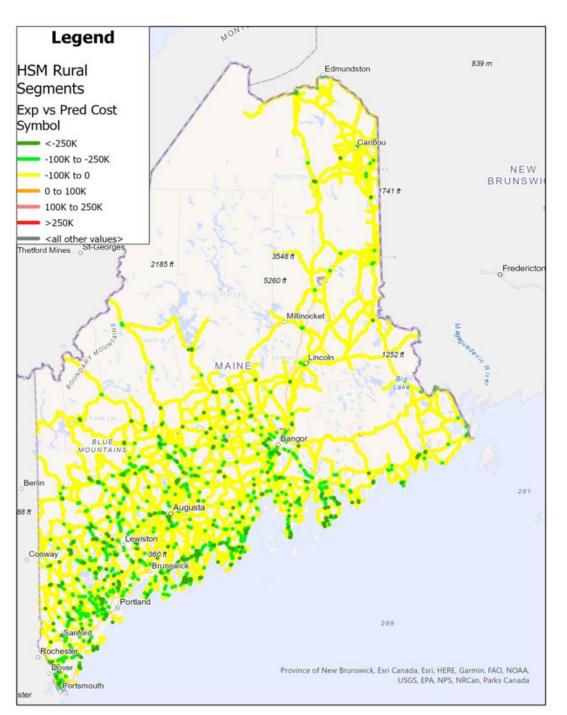
Complex - No Safety


Complex - Safety

- Minimum Assessment
- Apply countermeasures if needed & able

- Minimum Assessment
- Estimate change in Predicted/Expected Crashes

- Minimum Assessment
- Estimate change in Predicted/Expected Crashes (must reduce)
- Requires B/C over 1 for project or safety component of project for safety funding eligibility


Brenton Bogard

Ohio Department of Transportation Brenton.Bogard@dot.ohio.gov

MaineDOT Rural Two Lane Network Screening using Part C of HSM

Initial Expectations

- Resultant dataset would be data driven.
- Generate Predictive Results and Expected Results using 3,5, and 10
 Years of Observed Crash Data
- Publish GIS version of the results to ArcGIS Online (AGOL) and use applications like AGOL Dashboards to review the results.
- Identify any new data elements that might be needed.
- Create different visualizations

Example of Final GIS Product

					HZ		HZ	HZ	CURVE				RURAL	VATION		EXPECTED			EX
	NUMYEA				GENERA	L SEGMENT	CURVE	CURVE	LEN	GREATES	MEAS	SUPERELE	DESIGN	VARIANC	COMBINE	COST PER	EXPECTED 20YR	EXPECTED 10YR	С
HSM Seg Def	RS	RTCODE	BMP	EMP	CURVE ID TYPE	LENGTH	RADIUS	LENGTH	MILES	T SLOPE	SUPER	V VAR	SUPER	E RURAL	CMF	YEAR	WORTH	WORTH	P
HSM Two Way Segment	3	0001X	439.887	439.907	21910 Tangent	0.02	. 0	1633.998	0.309	5.858099					1.217542	\$3,377.80	\$38,743.10	\$24,860	.90
HSM Two Way Segment	3	0001X	439.907	440.135	21908 Curve	0.228	6521.093	1193.948	0.226	6.180926	2.48507		2.2	. 0	1.322383	\$69,042.86	\$791,916.16	\$508,161	.46
HSM Two Way Segment	3	0001X	440.135	440.14	21907 Curve	0.005	6557.335	1057.185	0.2	6.180926	1.795823	0.004042	2.2	0.404177	1.327902	\$898.53	\$10,306.07	\$6,613	.26
HSM Two Way Segment	3	0001X	440.14	440.335	21907 Curve	0.195	6557.335	1057.185	0.2	6.180926	1.795823	0.004042	2.2	0.404177	1.324186	\$65,452.21	\$750,731.69	\$481,733	.96
HSM Two Way Segment	3	0001X	440.335	440.396	21905 Tangent	0.061	. 0	710.024	0.134	6.115754					1.28036	\$11,067.93	\$126,948.29	\$81,460	.93
HSM Two Way Segment	3	0001X	440.396	440.435	21905 Tangent	0.039	0	710.024	0.134	2.703655					1.103759	\$19,189.16	\$220,098.15	\$141,233	.89
HSM Two Way Segment	3	0001X	440.435	440.472	21905 Tangent	0.037	0	710.024	0.134	2.727801					1.103759	\$6,033.99	\$69,209.39	\$44,410	.69
HSM Two Way Segment	3	0001X	440.472	440.706	21904 Curve	0.234	5760.579	1239.514	0.235	2.727801	3.643722		2.4	0	1.14599	\$52,406.78	\$601,101.64	\$385,718	.46
HSM Two Way Segment	3	0001X	440.706	440.81	21902 Tangent	0.104	. 0	958.611	0.182	0.892723					1.027291	\$16,082.14	\$184,460.88	\$118,365	.95
HSM Two Way Segment	3	0001X	440.81	440.89	21902 Tangent	0.08	0	958.611	0.182	0.892723					1.027076	\$36,796.66	\$422,054.79	\$270,826	.62
HSM Two Way Segment	3	0001X	440.89	440.921	21902 Tangent	0.031	. 0	958.611	0.182	0.892723					1.023683	\$5,007.04	\$57,430.35	\$36,852	.25
HSM Two Way Segment	3	0001X	440.921	441.033	21902 Tangent	0.112	0	958.611	0.182	0.622954					1.140427	\$19,564.40	\$224,402.13	\$143,995	.69
HSM Two Way Segment	3	0001X	441.033	441.178	21900 Curve	0.145	7792.233	768.585	0.146	0.622954	-2.48479	0.024848	0	2.484791	1.326893	\$43,432.83	\$498,171.14	\$319,669	.41
HSM Two Way Segment	3	0001X	441.178	441.279	21899 Curve	0.101	7152.955	539.035	0.102	0.622954	-2.26835	0.022684	0	2.268352	1.35071	\$19,851.77	\$227,698.24	\$146,110	.76
HSM Two Way Segment	3	0001X	441.279	441.357	21898 Curve	0.078	2351.125	408.693	0.077	0.622954	-3.9413	0.085413	4.6	8.541301	1.905391	\$19,107.99	\$219,167.14	\$140,636	.47
HSM Two Way Segment	3	0001X	441.357	441.378	21897 Curve	0.021	2077.886	113.422	0.021	0.622954	1.153759	0.036462	4.8	3.646241	2.828879	\$6,397.31	\$73,376.64	\$47,084	.76
HSM Two Way Segment	3	0001X	441.378	441.478	21896 Curve	0.1	7766.281	531.558	0.101	0.771609	2.367438	0	0	0	1.259126	\$33,464.59	\$383,836.21	\$246,302	.30
HSM Two Way Segment	3	0001X	441.478	441.61	21895 Curve	0.132	2196.487	983.585	0.186	0.771609	4.289786	0.005102	4.8	0.510214	1.330311	\$25,677.54	\$294,519.36	\$188,988	.93
HSM Two Way Segment	3	0001X	441.61	441.664	21895 Curve	0.054	2196.487	983.585	0.186	1.771609	4.289786	0.005102	4.8	0.510214	1.341331	\$9,945.76	\$114,077.08	\$73,201	.66
HSM Two Way Segment	3	0001X	441.664	441.806	21893 Tangent	0.142		674.934	0.128	1.771609					1.273013	\$53,137.55	\$609,483.51	\$391,096	.99
HSM Two Way Segment	3	0001X	441.806	441.874	21893 Tangent	0.068	0	674.934	0.128	1.072193					1.190754	\$24,818.78	\$284,669.45	\$182,668	.38
HSM Two Way Segment	3	0001X	441.874	441.887	21893 Tangent	0.013	0	674.934	0.128	0.311567					1.190754	\$2,199.85	\$25,232.11	\$16,191	.09
HSM Two Way Segment	3	0001X	441.887	441.97	21891 Curve	0.083	1809.307	921.302	0.174	0.311567	3.692534	0.015075	5.2	1.507466	1.428109	\$31,097.09	\$356,681.17	\$228,877	.29
HSM Two Way Segment	3	0001X	441.97	442.061	21891 Curve	0.091	1809.307	921.302	0.174	1.914301	3.692534	0.015075	5.2	1.507466	1.591127	\$35,455.97	\$406,677.18	\$260,959	.03
HSM Two Way Segment	3	0001X	442.061	442.161	21890 Curve	0.1	7209.178	526.926	0.1	1.914301	-1.87698	0.01877	0	1.876975	1.652192	\$38,268.41	\$438,935.65	\$281,658	.83
HSM Two Way Segment	3	0001X	442.161	442.272	21888 Tangent	0.111	. 0	1859.997	0.352	1.914301					1.464292	\$37,496.08	\$430,077.08	\$275,974	.41
HSM Two Way Segment	3	0001X	442.272	442.423	21888 Tangent	0.151	. 0	1859.997	0.352	0.093924					1.464292	\$29,851.89	\$342,398.83	\$219,712	.51
HSM Two Way Segment	3	0001X	442.423	442.5	21888 Tangent	0.077	0	1859.997	0.352	2.734285					1.680932	\$16,677.94	\$191,294.66	\$122,751	.09
HSM Two Way Segment	3	0001X	442.5	442.551	21888 Tangent	0.051	. 0	1859.997	0.352	2.734285					1.655285	\$11,522.84	\$132,166.07	\$84,809	.11
HSM Two Way Segment	3	0001X	442.551	442.594	21888 Tangent	0.043	0	1859.997	0.352	2.313108					1.655285	\$27,489.12	\$315,298.04	\$202,322	.32
HSM Two Way Segment	3	0001X	442.594	442.783	21888 Tangent	0.189	0	1859.997	0.352	1.685477					1.441951	\$71,568.56	\$820,885.74	\$526,750	.83
HSM Two Way Segment	3	0001X	442.783	442.924	21888 Tangent	0.141	. 0	1859.997	0.352	3.894743					1.586146	\$48,302.49	\$554,025.75	\$355,510	.53
HSM Two Way Segment	3	0001X	442.924	442.994	21888 Tangent	0.07	0	1859.997	0.352	3.301505					1.586146	\$15,392.30	\$176,548.47	\$113,288	.67
HSM Two Way Segment	3	0001X	442.994	443.204	21888 Tangent	0.21		1859.997	0.352	1.954138					1.310937	\$55,947.66	\$641,715.25	\$411,779	.65
HSM Two Way Segment	3	0001X	443.204	443.25	21888 Tangent	0.046	0	1859.997	0.352	1.324444					1.179924	\$8,286.59	\$95,046.53	\$60,990	.02
HSM Two Way Segment	3	0001X	443.25	443.449	21888 Tangent		0	1859.997	0.352	1.324444					1.168477	\$38,193.61	\$438,077.70	\$281,108	.29
HSM Two Way Segment	3	0001X	443.449	443.635	21888 Tangent		0	1859.997	0.352	1.2032					1.168477				
HSM Two Way Segment	3	0001X	443.635	443.647	21888 Tangent		. 0	1859.997		4.741411					1.285325	\$2,456.45			
HSM Two Way Segment	2	00011	AA3 6A7	AA2 259	21879 Cun/a_		5218 257	1121 120	0.212	5.005099	2 3/15585	0.002544	2.6	0.254415	1 3///219				

Two Way Rural Roadways

- Maine DOT State Urban Rural
- Two Way
- Doesn't include Interstate or Freeway and Expressway
- Number of Thru Lanes <=3
- Excluding Interstate and Freeway and Expressway road functions you are left with almost 7100 miles of roadway segments that will be evaluated.

		Rural Horizontal	Urban		No	
	Number of Thru	Curves Miles	Horizontal	No Horizontal	Horizont	
FFC	Lanes	(mi)	Curves Miles	Curves Rural (mi)	al Curves	
Local	<=3	39.742	10.74	12625.262	1787.009	
Interstate	<=3	676.49	163.126	9.943	3.099	
Other Freeway or						
Expressway	<=3	17.07	30.121	0.02	1.39	
Other Principal						
Arterial	<=3	784.128	116.044	7.644	15.728	
Minor Arterial	<=3	946.234	214.996	6.988	16.823	
Major Collector	<=3	3252.311	446.426	45.255	14.727	
Minor Collector	<=3	2065.583	111.718	10.928	1.66	
		7781.558	1093.171	12706.04	1840.436	

					No
			Urban		Horizont
		Rural Horizontal	Horizontal		al Curves
	Number of Thru	Curves Miles	Curves Miles	No Horizontal	Urban
FFC	Lanes	(mi)	(mi)	Curves Rural (mi)	(mi)
Local	<=3	39.742	10.74	12625.262	1787.009
Other Principal	<=3	784.128	116.044	7.644	15.728
Minor Arterial	<=3	946.234	214.996	6.988	16.823
Major Collector	<=3	3252.311	446.426	45.255	14.727
Minor Collector	<=3	2065.583	111.718	10.928	1.66
		7087.998	899.924	12696.077	1835.947

Crash Modification Factors (CMF's) used

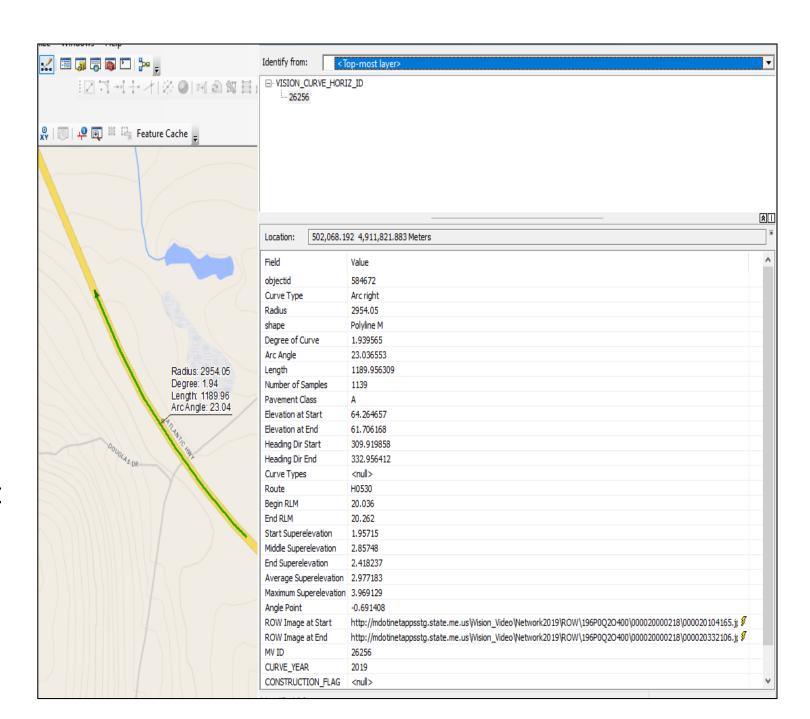
- Lane Width
- Shoulder Width and Type
- Horizontal Curves
- Super Elevation
- Grades
- Driveway Density

- Centerline Rumblestrips
- Passing Lanes
- Two Way Left Turn Lane
- Roadside Design
- Lighting

	Worksheet 1B Crash Modification Factors for Rural Two-Lane Two-Way Roadway Segments											
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
CMF for Lane	CMF for	CMF for	CMF for Super-	CMF for	CMF for	CMF for	CMF for	CMF for	CMF for	CMF for	CMF for	Combine
Width	Shoulder Width	Horizontal	elevation	Grades	Driveway	Centerlin	Passing	Two-Way	Roadside	Lighting	Automated	d CMF
	and Type	Curves			Density	e Rumble	Lanes	Left-Turn	Design		Speed	-
						Strips		Lane	_		Enforcemen	
CMF 1r	CMF 2r	CMF 3r	CMF 4r	CMR 5r	CMF 6r	CMF 7r	CMF 8r	CMF 9r	CMF 10r	CMF 11r	CMF 12r	CMF comb
rom Equation	from Equation	from	from	from Table	from	from	from	from	from	from	from	(1)x(2)x
10-11	10-12	Equation 10-	Equations 10-	10-11	Equation 10-	Section	Section	Equation	Equation 10-	Equation 10-	Section	
		13	14, 10-15, or		17	10.7.1	10.7.1	10-18 & 10-	20	21	10.7.1	x(11)x(12
			10-16					19)
1.02	1.02	1.14	1.00	1.16	1.31	0.94	1.00	1.00	1.07	1.00	1.00	1.814

Data Inputs

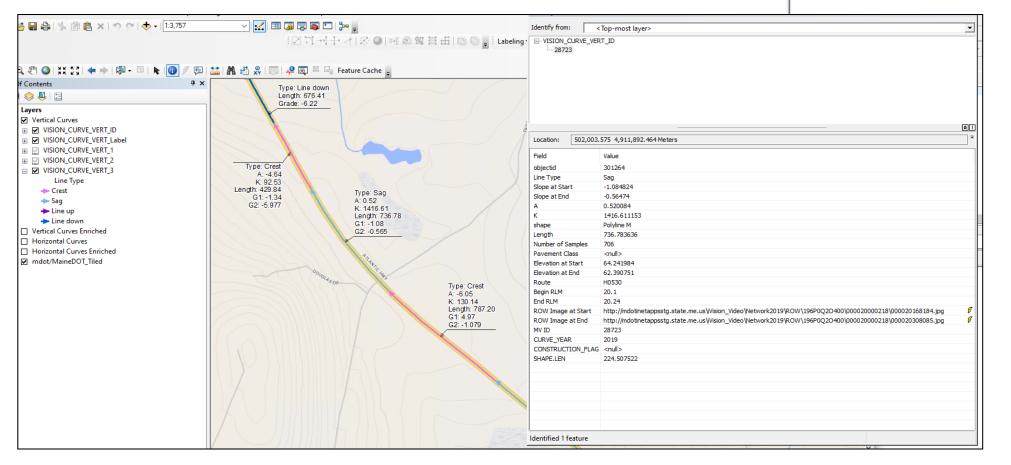
- Horizontal and Vertical Curve Data
 - ARAN Database
 - Horizontal Curve Data includes Radius, Length, Superelevation
 - Vertical Curve Data includes Start and End Slopes
- Centerline Rumblestrips
 - Managed in the Linear Referencing System (LRS)
- Cross Sectional Data
 - Managed in the LRS
 - Lane and Shoulder Types and Widths
 - Passing Lanes and Truck Lanes
 - Guardrail data managed in Maintenance System
- Factored AADT's
 - AADT's managed in the LRS and factors are used to factor this value to the current year.
- Observed Crash Crashes
 - All crashes are reviewed and kept in sync with the LRS
 - Expected Results would be compiled based on 3,5, and 10 years of observed crashes


GIS Segmentation

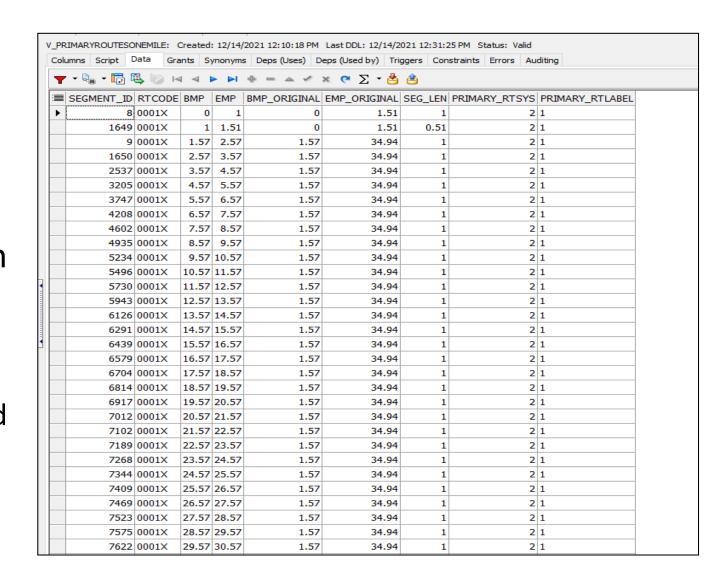
- Nightly Extract, Transform, and Load (ETL) of Road Network
 Segmentation that includes items from the LRS in addition to other items.
 - 1/10 mile Pavement Data
 - Horizontal and vertical Curve Data Best-Of (2015-2021 Data Collections)
 - Standard LRS Assets used for Reporting (FFC, Street Name, AADT, etc.)
 - Calculated Project Items such as Most Recent Highway Treatment, Full Project History.
 - Current segmentation includes 450,431 segments

Horizontal Curve Data

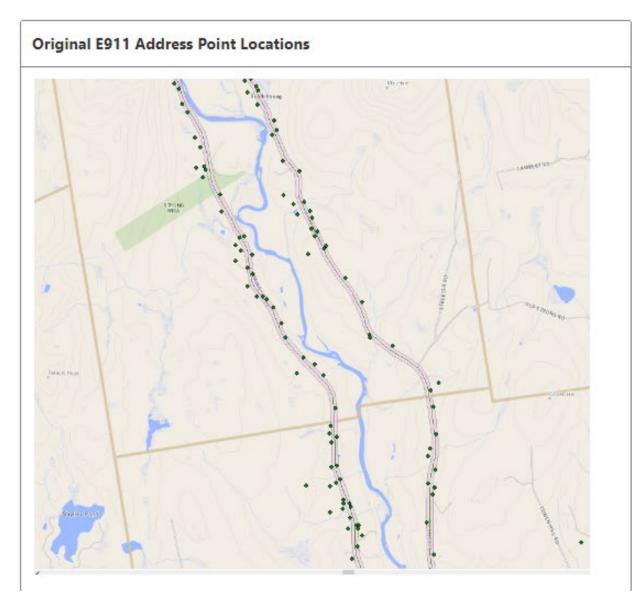
- Based on report from software used with ARAN.
- Includes Radius, Length,
 Super Elevation
- Many Routes do include curve data collected for both directions, but HSM segment output set to one side.
- Three Types of Curves

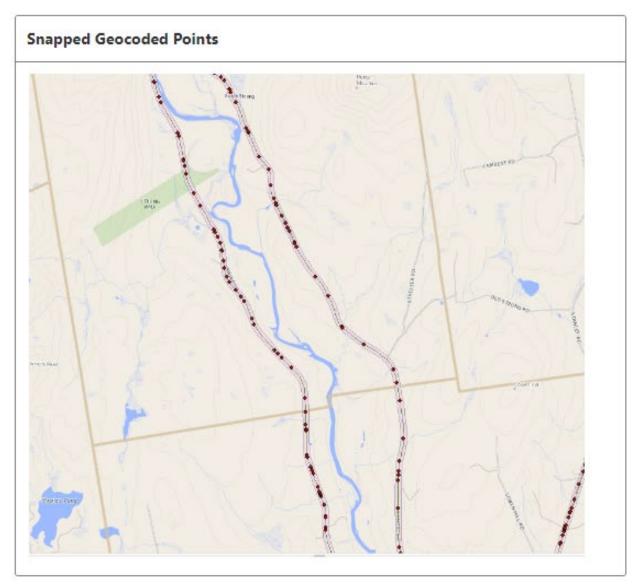

:=	SEG_LEN	TYPE
•	6632.621	Line
	2190.892	Arc right
	2129.329	Arc left

Vertical Curve Data

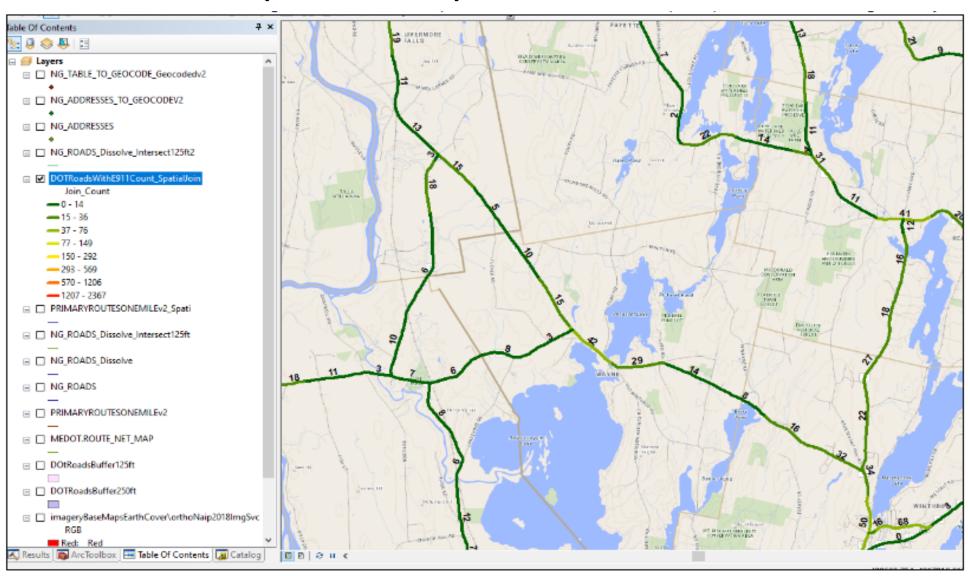

- Used the absolute max of the Start and End Slope
- Multiple Horizontal Tangents were combined and then segmented based on Vertical Curve Changes

≣	SEG_LEN	TYPE
•	4129.249	Sag
	4012.729	Crest
	1433.968	Line up
	1380.952	Line down



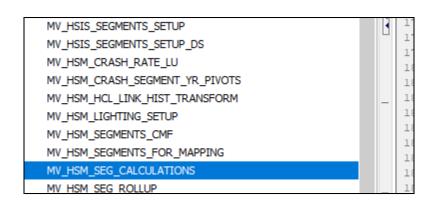

Driveway Density

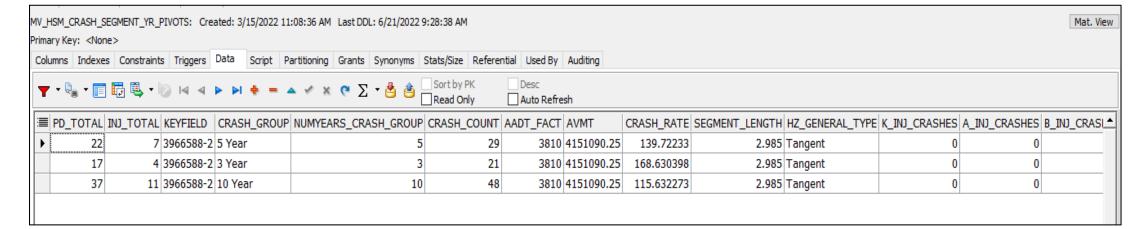
- Associate e911 geocoded address points to DOT Road Centerlines
- DOT Road Centerlines broken up into ~1 mile segments based on the Primary Route.
 - This was completed using an Oracle View and functions and methods available in the Database to Dissolve segmentation and to create segments of any length.



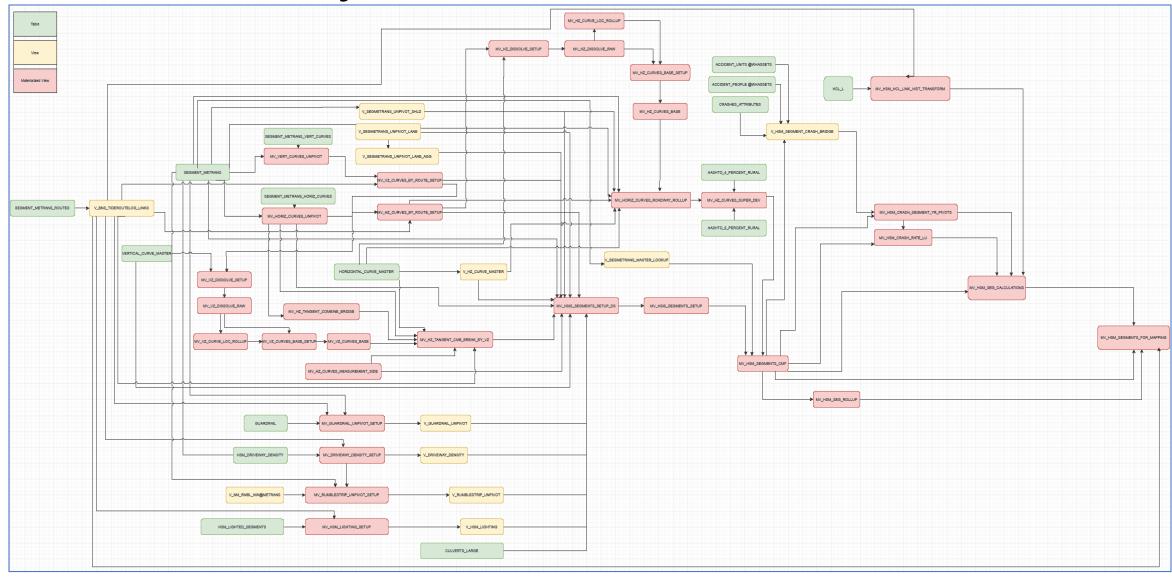
Driveway Density

Driveway Density

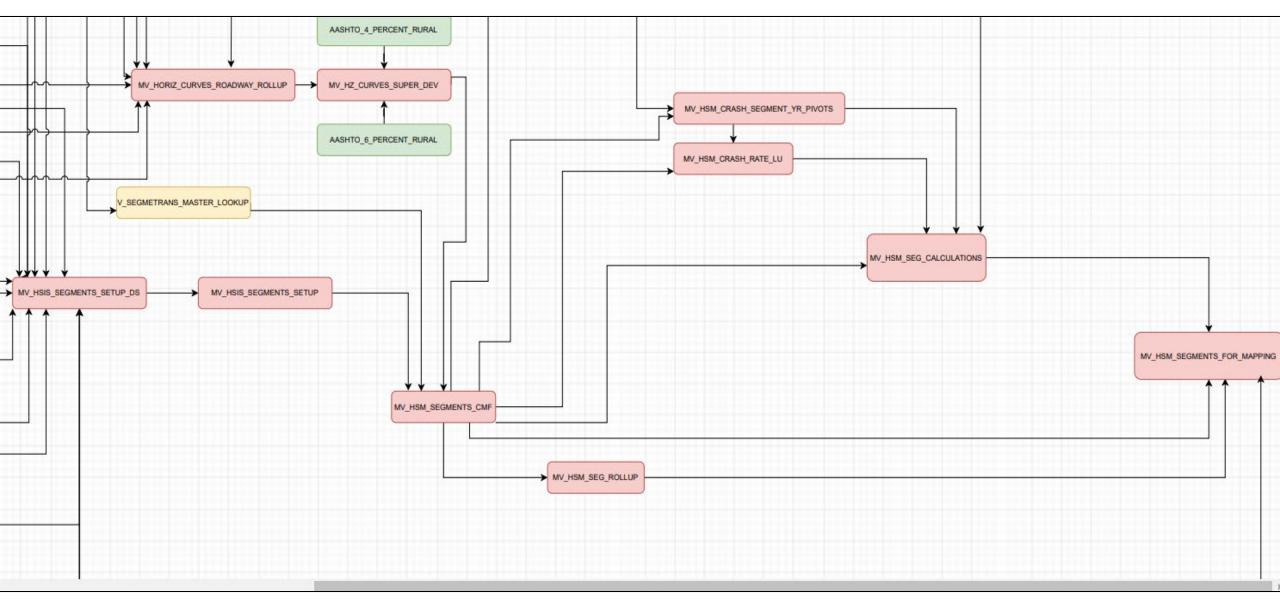



How Dataset was Put Together

 Logic was adapted using HSM Part C and Excel File for Rural Two Lane Roadways in Oregon

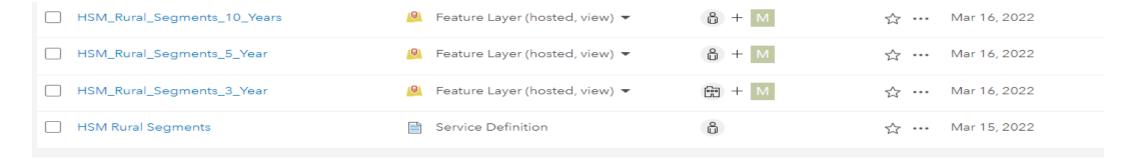

https://www.oregon.gov/ODOT/Engineering/ Docs TrafficEng/HSM-OR Rural-Two-lane.xls

- Logic and formulas were adapted for use in Structured Query Language (SQL) in and Oracle Database
- Based on a series of views in the GIS
 Database that help pull together different objects.



Database Objects

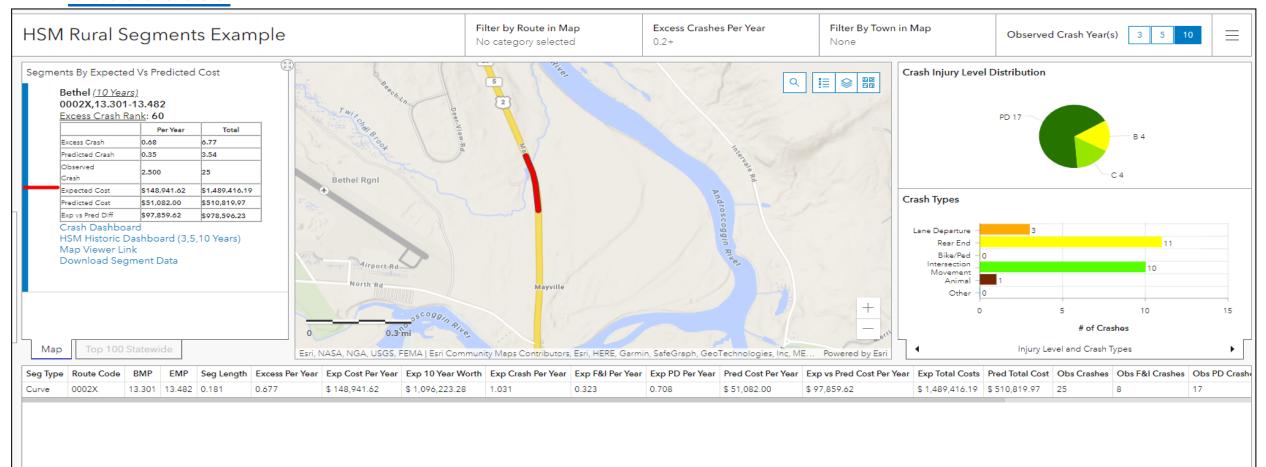
HSM Specific Objects


Crash Modification Factor Ranges

• The following are the range of the Crash Modification Factors (CMF) values for the 12 used on Two Way Rural Roadways.

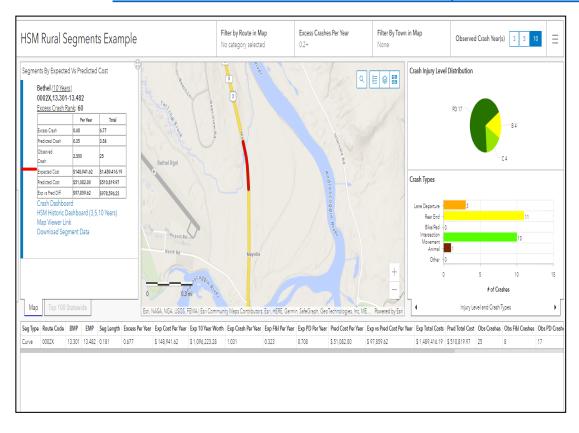
	CMF_DESC	MINVAL	MAXVAL	AVGVAL
Þ	Lane Width	1	1.225	1.055
	Shoulder Width and Type	0.942	1.225	1.05
	Horizontal Curves	1	28.32	1.787
	Superelevation	1	1.629	1.016
	Grades	1	1.16	1.079
	Driveway Density	1	4.163	1.382
	Centerline Rumblestrips	0.94	1	0.996
	Passing Lanes	0.65	1	0.997
	Two Way Left Turning Lane	0.663	1	0.999
	Roadside Design	0.875	1.222	1.068
	Lighting	0.931	1	0.986
	Automated Speed Enforcement	1	1	1

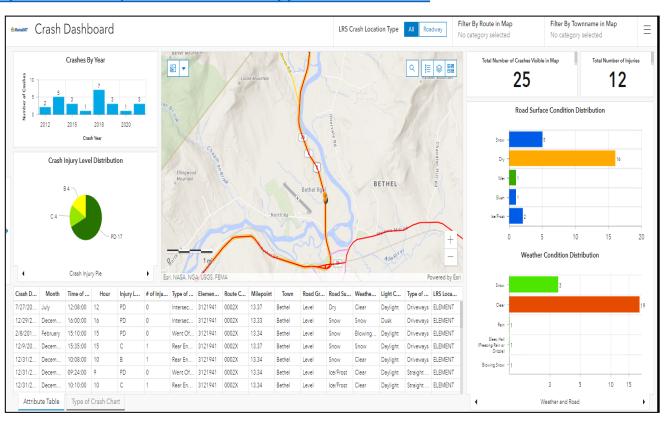
Deliverables


- Predicted/Expected/Observed Results are part of a materialized view in the Database that is refreshed daily based on any changes in the segmentation and/or calculations.
 - Segments can be mapped using Route/Measures
- Mapped dataset includes a Feature Layer with 252 columns
 https://maine.maps.arcgis.com/home/item.html?id=afc08ad8680e4cc4ad32a3414e0b5482&view=table&so
 https://maine.maps.arcgis.com/home/item.html?id=afc08ad8680e4cc4ad32a3414e0b5482&view=table&so
 <a href="https://maine.maps.arcgis.com/home/item.html?id=afc08ad8680e4cc4ad32a3414e0b5482&view=table&so
 <a href="https://maine.maps.arcgis.com/home/item.html?id=afc08ad8680e4cc4ad32a3414e0b5482&view=table

- ~95,000+ segments for the 7100 miles for each of the observed year groupings
- A subset of the segments can easily be created and provided for use in Safety Benefit type calculations.

ArcGIS Online Dashboard

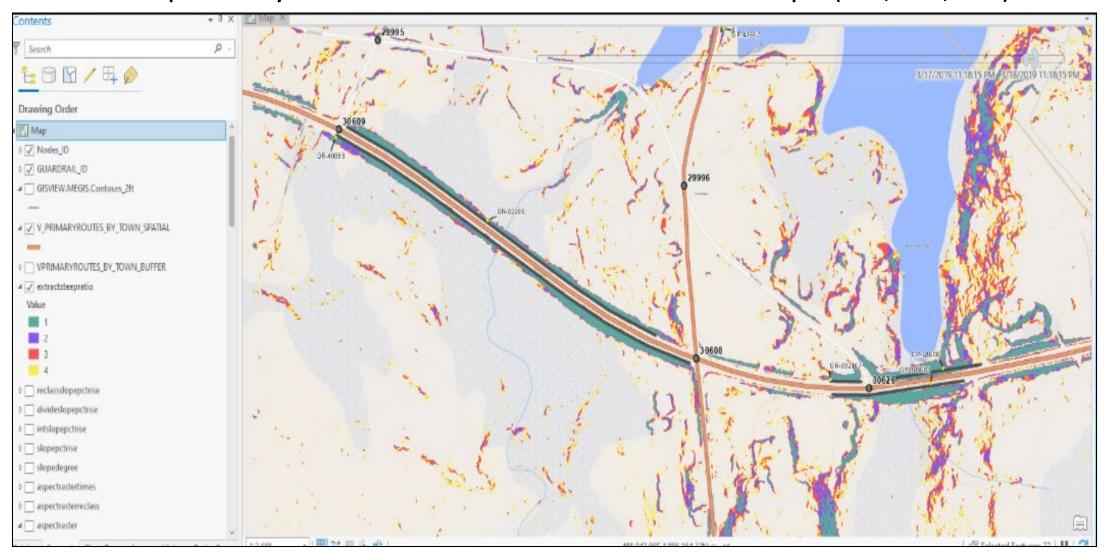

• Example that links to other ArcGIS Online (AGOL) Applications. https://maine.maps.arcgis.com/apps/dashboards/5b9f3641464f48909dd864e 2c6ad0cea



ArcGIS Online Dashboard

- Explore Observed Crash Data Associated to segment.
- List Results include a link that will open to a universal crash dashboard filtered on just the crashes for that segment.

https://maine.maps.arcgis.com/apps/dashboards/3b0042670e8c49a68383d62ee4f9d0cd#elementid=3121941&eleoffset=0.431,0.612&crashyear=2012,2021&casloctype=ELEMENT



Future Goals

- Continue to evaluate what items are helpful and those that are not.
 - Where is the data coming from for a calculation and if there is an issue how to fix it?
- Relate additional crash items that are available at the Unit and Person level
 - Sequence of Events, Pre-Crash, Most Damaged Area of Unit, etc.
- Continue to explore functionality available in ArcGIS Online
 - What objects are reusable for analysis that could be integrated easily with the HSM Data
 - Improve Performance of AGOL applications and Feature Layers?
- Expand Datasets available in ArcGIS Online
 - Maine DOT specific datasets are pretty limited, but should really include at the very least the layers available in the Maine DOT Public Map Viewer. https://www.maine.gov/mdot/mapviewer/

Future Goals

• Use statewide Digital Elevation Model that includes different lidar collections over the past 10 years to Derive and estimated Side Slope (1:2, 1:3, 1:4).

Contact Info

Jon Prendergast
Maine DOT Office of Safety
Jon.J.Prendergast@maine.gov