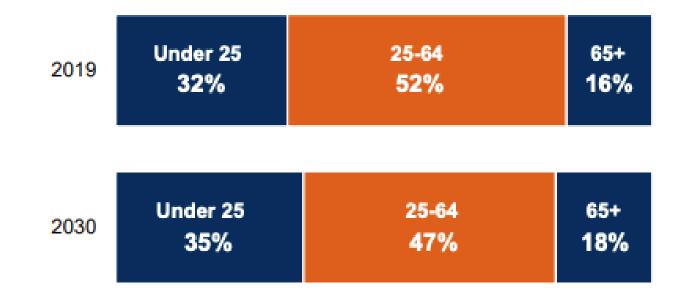

Encouraging Science Based Economic Development Through Regional Education Programs

The Fourth Industrial Revolution – Science Is The Hub

Stephen L. Pruitt, Ph.D.

President

Push This Button



Education Economics and Future Workforce

A More Dependent Population

By 2030, for every 53 dependent people in SREB states there will be just 47 working-age adults to provide for them.

Notes: Working-age is 25 to 64. Percentages may not add to 100% due to rounding.

Source: SREB Fact Book, U.S. Census Bureau

Current Demographic Profile of the Region

Category	SREB	USA
Overall Population	124,717,934	329,725,481
Male	49.3%	49.5%
Female	50.7%	50.5%
Race: White	65.9%	68.2%
Race: Black or African American	18.9%	12.6%
Race: American Indian and Alaska Native	0.7%	0.8%
Race: Asian	3.6%	5.7%
Race: Native Hawaiian and Other Pacific Islander	0.1%	0.2%
Race: Some Other Race	3.9%	5.6%
Race: Two or More Races	7.0%	7.0%
Hispanic or Latino (of any race)	18.3%	18.4%

75th
Anniversary

Workforce Participation and Education Levels

Category	SREB	USA
Labor Force Participation Rate and Size (civilian population 16 years and over)	62.0%	63.4%
Prime-Age Labor Force Participation Rate and Size (civilian population 25-54)	81.1%	82.5%
No High School Diploma	11.2%	10.3%
High School Graduate	26.7%	25.3%
Some College, No Degree	20.5%	20.1%
Associate's Degree	9.1%	9.3%
Bachelor's Degree	20.6%	22.0%
Postgraduate Degree	11.9%	13.1%
Poverty Level (of all people)	13.9%	12.6%
1 overty Level (of all people)		40,661,636

75th
Anniversary

Unprepared and Unaware

Upskilling the Workforce for a Decade of Uncertainty

SREB

Southern

Regional

Board

Education

SREB.org

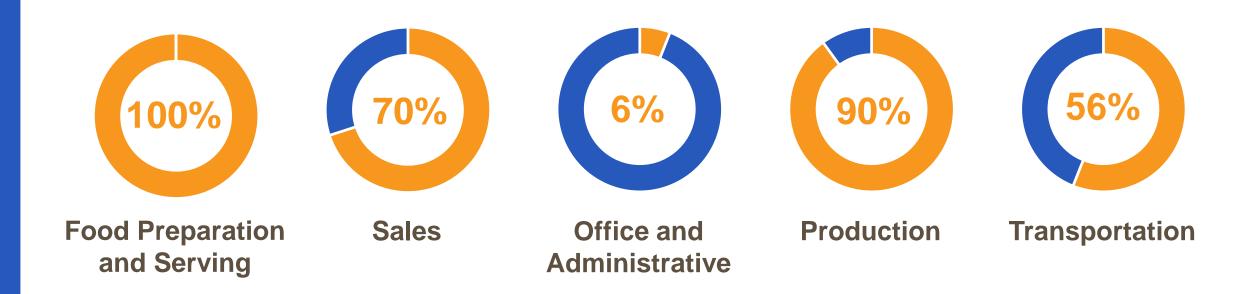
The SREB Region's Economic Outlook

The Potential Impact of Automation and Al

Many American workers find themselves in a continuous struggle to keep up with advances in automation and artificial intelligence that could potentially displace them from a growing list of occupations. Nearly every day articles and online videos highlight new technologies. We learn about machines being tested to deliver packages to homes autonomously. A robotic interviewer in Sweden now questions job applicants in an attempt to eliminate human bias from the hiring process. And researchers are working on an ocular implant for humans to record everything their eyes see during the day.

As companies continue to incorporate new technologies, making machine learning and robotics common in almost all workplaces, more and more working adults need to adapt to computerized work activities. Many need to move into new jobs raising their skill levels, or they will be out of a job altogether. According to SREB's *Unprepared and Unaware: Upskilling the Workforce for a Decade of Uncertainty*, adults with the lowest levels of skills — typically those with a high school credential or less — are most vulnerable to these changes.

If state and business leaders do not act

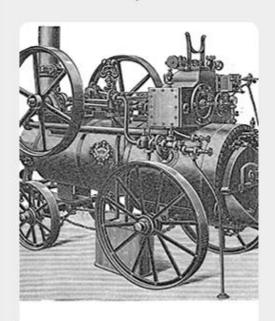

children could be unemployab or stuck in low-wage jobs: an endless cycle of poverty If states and industry leaders do not act quickly to prepare employees for these workplace transformations, 18 million or more adults will find themselves in low-paying positions or out of a job and increasingly reliant on public services. Businesses will struggle to fill middle- and high-skilled positions. Children — future workers — will face similar struggles and likely be unprepared for future positions, worsening these problems

for states and businesses.

This brief was prepared by Meagan Crowe, policy analyst, under the leadership of Jeff Gagné, director of policy analysis, and Joan Lord, vice president of education data, policy research and programs.

Percentage of the Workers that are Vulnerable During the Pandemic in Each Top 5 Industry

...together, they make up almost one-third of the total workforce in Georgia.



4th Industrial Revolution

FIRST

Mechanical Production

steam, water



1784: First power loom

SECOND

Mass Production

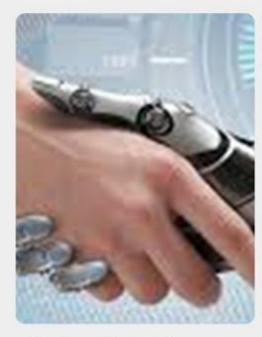
electricity

1870: First assembly line

THIRD

Digital

IT, Electronics



1969: First programmable logic computer

FOURTH

Cyber physical systems

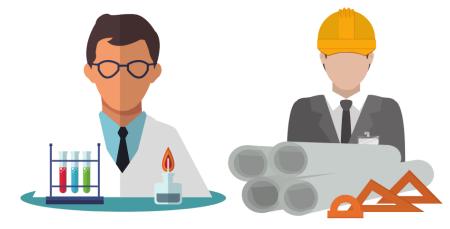
physical, digital, biological

Today: Robots learning from humans

Is STEM Critical To Success in the 4th Industrial Revolution?

Most Fields Rely (or Will) on STEM

Health Care


- Doctors
- Nurses
- Lab Techs
- Med Assts

Skilled Trades

- Plumbers
- Electricians
- Carpenters
- Mechanics

White Collar Professionals

- Scientists
- Architects
- Engineers
- Psychologists

Most of the 50 million workers in the region will be affected by automation in the coming decades

> If state and business leaders do not act

workers and their children could be unemployable or stuck in low-wage jobs: an endless cycle of poverty

This multigenerational cycle, combined with rising workforce skill demands, means more workers of all educational attainment levels will be:

unemployed or underemployed

earning incomes below the poverty level

reliant on state services

Just 5% of jobs are completely automatable, but 44% of all work activities have automation potential. In the top 5 industries the potential is often greater:

Production

Administrative

Note: The top five industries employ the most people.

37% highly vulnerable skill demands

59% vulnerable workers employed in the top 5 industries in 2016

& Serving

Business & industry will need increasing numbers of workers with middle & high skills

Are students prepared?

Parents today: 25 to 44 year-olds

37% had a high school credential or less in 2017

Of 8th graders whose parents had no education after high school

36% were below Basic on NAEP reading and

48% were below Basic on NAEP math

These percentages were just

for students whose parents had some education beyond high school

Pre-Pandemic Total Automation Potential

Work activities in the Top 5 Employing Industries (2014-2030)

In the industries that employ the most people, automation potential is often greater:

Food Preparation and Serving

Sales and Related

Production Occupations

Office and Administrative

Transportation and Material Moving

Percentage of the Workers that are Vulnerable During the Pandemic in Each Top 5 Industry

The percentage of vulnerable workers varies by industry:

Food Preparation and Serving

Sales and Related

Production Occupations

Installation and Maintenance

Transportation and Material Moving

...together, they make up almost one-third of the total workforce in the SREB region.

Reimaging STEM

Year in Review – STEM Job Postings

306.6k $_{\text{Total}}$

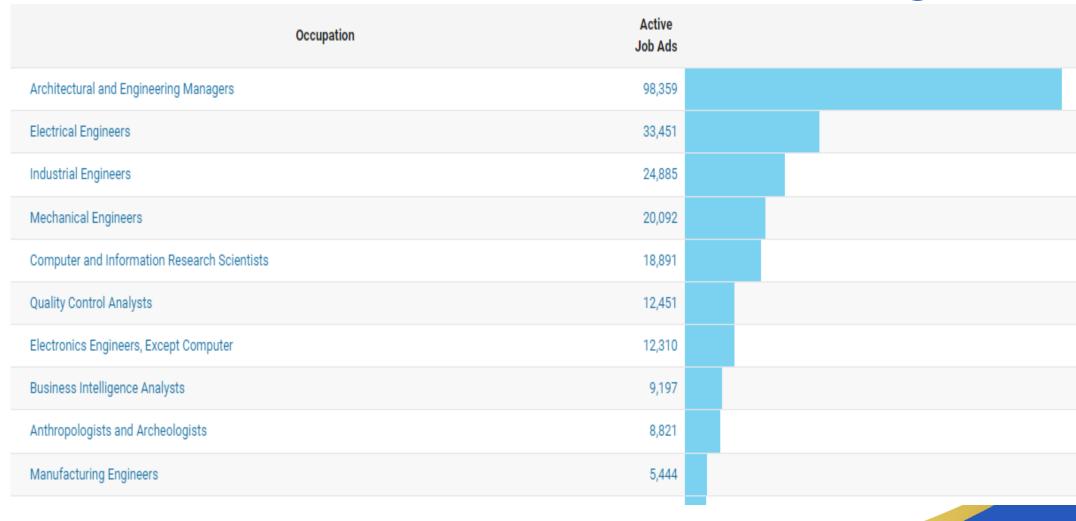
76 Occupations

34.5k Locations

35.4k Employers

689 Certifications

2k Hard Skills


109 Soft Skills

119.2k

6 Education Levels

582 Programs

9 Job Types

75th
Anniversary

Year in Review – Manufacturing Job Postings

614.6k Total

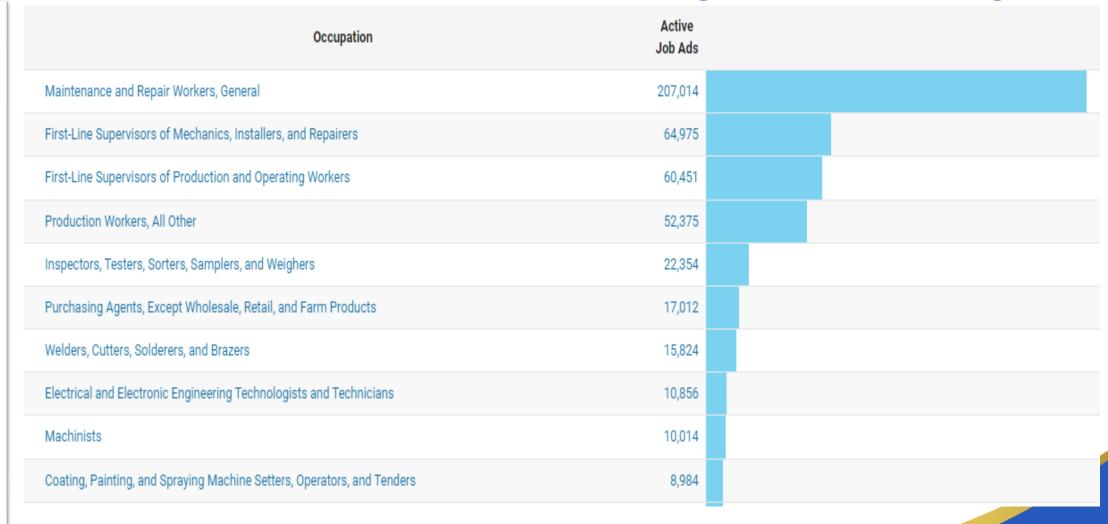
148 Occupations

71.4k Locations

81.6k Employers

570 Certifications

2.1k Hard Skills


109 Soft Skills

197.7k Job Titles

6 Education Levels

432 Programs

Job Types

STEM Career Cluster-10 Year Forecast

	Current Employment			10 Year Forecast			
Occupation	Empl	Median Ann Wages ²	LQ	Online Job Ads ³	Total Demand	Empl Growth	Ann % Growth
Data Scientists	57,757	\$106,500	0.90	2,026	65,389	25,044	3.7%
Statisticians	11,812	\$104,400	1.00	1,049	11,825	3,884	2.9%
Computer and Information Research Scientists	13,826	\$130,300	1.13	4,752	13,328	3,631	2.4%
Industrial Engineers	106,577	\$98,700	0.84	8,563	78,427	16,862	1.5%
Mechanical Engineers	83,690	\$98,800	0.75	5,472	59,576	11,607	1.3%
Electronics Engineers, Except Computer	37,990	\$115,200	0.92	4,144	26,009	4,750	1.2%
Mathematical Science Occupations, All Other	1,540	\$73,200	0.90	40	1,150	191	1.2%
Science, Technology, Engineering & Mathematics (CTE Cluster)	828,928	\$105,300	0.91	75,919	647,473	103,023	1.2%
Chemical Engineers	9,075	\$121,300	1.18	628	5,999	1,040	1.1%
Biochemists and Biophysicists	5,990	\$93,100	0.47	163	5,107	602	1.0%

75th
Anniversary

Manufacturing Career Cluster-10 Year Forecast

	Current Employment			10 Year Forecast			
Occupation	Empl	Median Ann Wages ²	LQ	Online Job Ads ³	Total Demand	Empl Growth	Ann % Growth
Wind Turbine Service Technicians	6,501	\$58,100	1.32	159	10,699	3,353	4.2%
Medical Equipment Repairers	27,207	\$53,800	1.08	612	32,174	5,506	1.9%
Computer Numerically Controlled Tool Programmers	7,571	\$61,800	0.70	363	8,825	1,444	1.8%
Semiconductor Processing Technicians	5,618	\$40,500	0.53	42	7,563	1,005	1.7%
Industrial Machinery Mechanics	175,422	\$60,300	1.14	1,394	173,184	28,572	1.5%
Electrical and Electronics Repairers, Powerhouse, Substation, and Relay	11,488	\$88,800	1.14	280	11,911	1,715	1.4%
Aerospace Engineering and Operations Technologists and Technicians	4,562	\$72,400	1.07	244	5,021	651	1.3%
Food Batchmakers	42,210	\$35,500	0.65	85	70,735	4,977	1.1%
Electrical, Electronic, and Electromechanical Equipment Assemblers, Except Coil Winders, Tapers, and Finishers	77,156	\$40,000	0.71	1,453	92,359	7,164	0.9%
Radio, Cellular, and Tower Equipment Installers and Repairers	5,252	\$61,200	1.07	423	5,996	473	0.9%

Source: JobsEQ Economic Overview Report 2/2/2024

Changing Approach

Engineering Challenge

Engineer and construct a platform that supports the mass of a full bottle of in a stable position as <u>far above the table top</u> as you can.

Materials:

- 1. Two sheets of paper
- 2. One full water bottle

STEM Challenge

Engineering challenge: Build a stable paper tower to support a water bottle

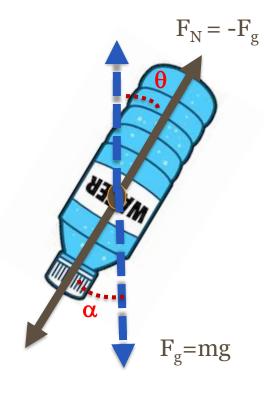
- 1. Engineer and construct a platform that supports the mass of a full bottle of in a stable position as far above the table top as you can. (Materials: Two sheets of paper and one full water bottle)
- 2. Develop a model (free body diagram) to show the forces acting on the water bottle to cause it to be stable on the tower.

Group Discussion

3. Use conceptual and mathematical models to communicate differences in the net forces between the systems that caused the phenomenon.

Individual Performance (SSW)*

4. Revise the design of the tower and write an explanation for how the sum of the forces acting on the water bottle system are more stable.


Free Body Diagram

If the bottle is completely vertical, force of gravity is equal to the normal force. Since the ends of the bottle are vertical, there are no additional calculations needed to properly model the balanced forces.

Free Body Diagram

$$F_{N} + F_{g} = 0$$

$$F_{N} = F_{g} + \sin\theta F_{g}$$

$$SREB F_{g} = -F_{g} + \sin\theta F_{g}$$

 $F_N = -F_g$ If the bottle is tilted, force of gravity is still equal to the normal force. However, forces acting on a bottle at an angle must be considered in the model. Since the bottle is not moving, the forces are balanced, but we must explain those balanced forces by converting forces acting at an angle to vertical forces.

Applying science Learning Beyond the Classroom

Provide students with a forum to share phenomena that are related to stability in a system.

Contact me:

Stephen L. Pruitt, Ph.D.

President

Stephen.Pruitt@SREB.org

Twitter: @DrSPruitt

Southern Regional Education Board