

Overview on FDA's risk-based approach to using artificial intelligence (AI) to support regulatory decision-making for drugs and biological products

Johnny Lam, PhD

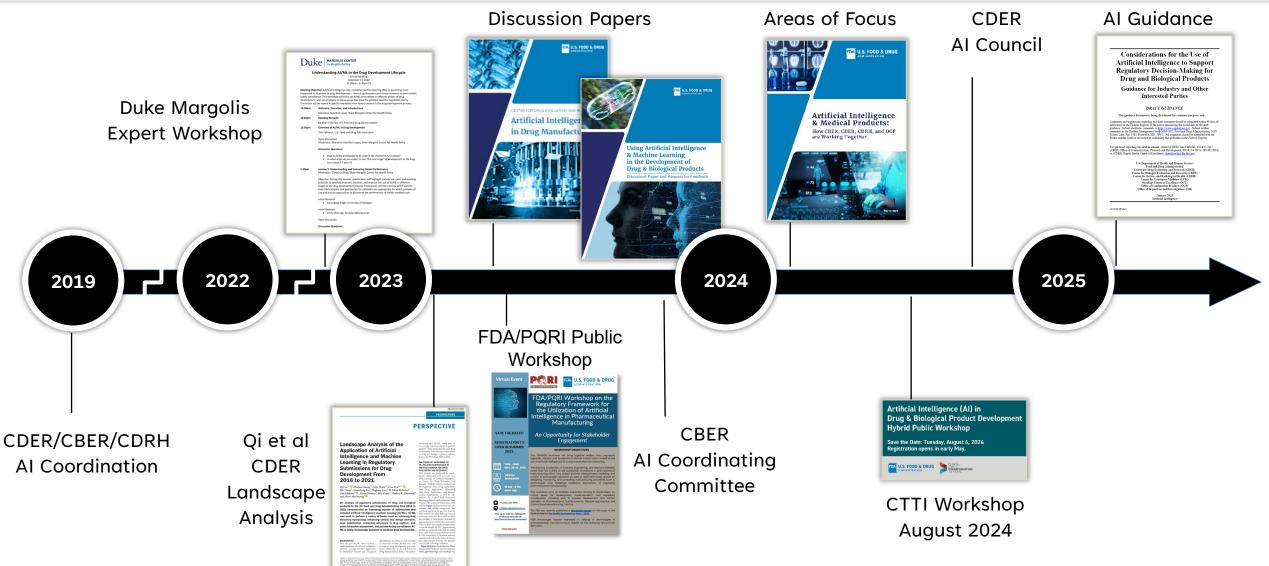
Associate Director for Policy
Office of Therapeutic Products (OTP)
Center for Biologics Evaluation and Research (CBER) | FDA

SESSION II: Al in the Pre-Clinical Development of Regenerative Medicine Therapies Developing Regenerative Medicine Therapies with Artificial Intelligence: A Workshop

November 18, 2025

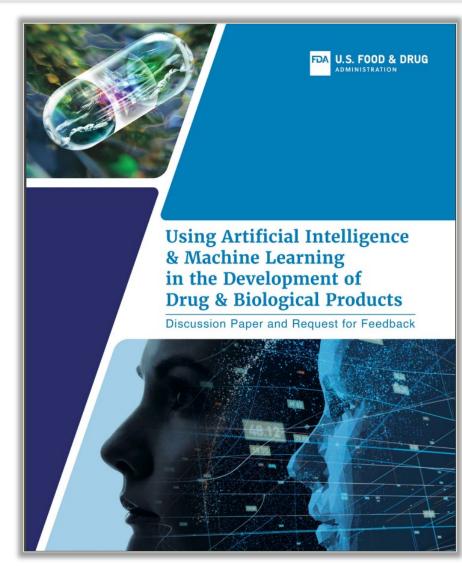
Informal Communication Disclaimer

My comments are an informal communication and represent my own best judgement. These comments do not bind or obligate FDA.


Outline

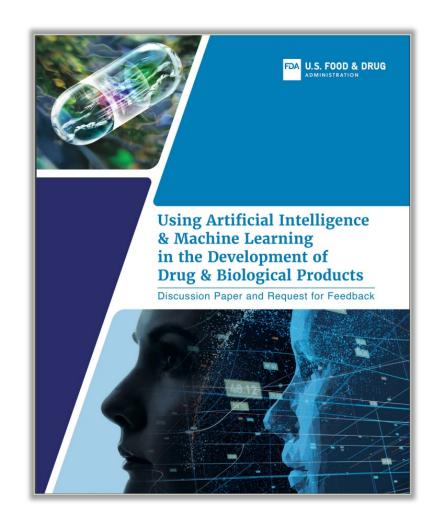
- Background and Highlights of Cross Center Efforts in Artificial Intelligence
- Risk-Based Approach Artificial Intelligence in Drug Development
 - Guidance Overview
 - Scope & Approach
 - A Risk-Based Credibility Assessment Framework
 - Special Consideration: Life Cycle Maintenance of the Credibility of AI Model Outputs in Certain Contexts of Use
- Artificial Intelligence Efforts and Engagement Opportunities in CBER

Recent History of FDA Activities Leading to Al Guidance


Guidance Informed by May 2023 Discussion Paper Feedback

- Discussion Paper Published May 11th, 2023
- Collaboration between CDER, CBER, CDRH/DHCoE
- Comments closed August 9th, 2023
- 65 entities responded with over 800 comments

Policy informed by discussion papers feedback


- Goal to promote mutual learning around three main core issues:
 - Human-led governance, accountability, and transparency
 - Quality, reliability, and representativeness of data
 - Model development, performance, monitoring, and validation

Responses to the May 2023 Discussion Paper

- Clarity on what falls within/outside the scope of FDA's oversight
- Clarity on how to operationalize a risk-based approach
- Clarity on "transparency" and the level of detail and documentation required
- Calls for harmonization globally, and alignment with medical devices
- Calls for the establishment of partnerships to advance the creation/sharing of machine-readable data sets

FRAME AI Public Engagement

Public engagement under the CDER-led Framework for Regulatory Advanced Manufacturing Evaluation Initiative (**FRAME**)¹ – focus on manufacturing

- March 2023: CDER, with CBER collaboration, released Artificial Intelligence in Drug Manufacturing discussion paper
- September 2023: FDA/PQRI public workshop on Al in drug manufacturing

An opportunity for **interested parties** to share and discuss key topics **with regulators**

FRAME AI Discussion Paper Key Topics

Cloud applications might affect oversight of pharmaceutical manufacturing data and records

The amount of data could affect existing data management practices

Regulatory oversight of Al's application in pharmaceutical manufacturing

Standards for developing and validating AI models for process control and release

Continuously learning AI systems might challenge regulatory assessment and oversight

Engagement

Artificial Intelligence in Drug Manufacturing: Public Feedback to FDA

Das et al. AAPS Open (2025) 11:10 https://doi.org/10.1186/s41120-025-00110-w AAPS Open

Public feedback to FDA on regulatory considerations for AI in drug manufacturing

Jayanti Das¹, Thomas F. O'Connor¹, Adam C. Fisher¹, Manuel Osorio², Johnny Lam² and Riley C. Myers¹

Abstract

FDA's Center for Drug Evaluation and Research (CDER) established the Framework for Regulatory Advanced Manufacturing Evaluation (FRAME) initiative to establish a regulatory framework to support the adoption of advanced manufacturing technologies that could benefit patients. FRAME prioritized artificial intelligence (Al) as a technology that has the potential to advance pharmaceutical manufacturing capabilities. FDA published a discussion paper titled Artificial Intelligence in Drug Manufacturing on March 1, 2023, and held a public workshop on The Regulatory Framework for the Utilization of Artificial Intelligence in Pharmaceutical Manufacturing: An Opportunity for Stakeholder Engagement from September 26-27, 2023. To ensure that FDA's evaluation of the regulatory framework for AI is thorough, interested parties were invited to comment on the discussion paper and provide feedback through moderated discussions at the public workshop. This paper summarizes public feedback related to data management, governance of data used to build AI/ML models, third-party data, risk-based model development and validation requirements, Al in the pharmaceutical quality system (PQS), lifecycle considerations of Al models, and other aspects of Al in drug manufacturing. In general, interested parties expressed a desire to implement AI, seek assurance that guidance or policies are compatible with current Al strategies in the manufacture of drugs and biological products, and feel that international harmonization will facilitate Al adoption. Key findings from public feedback showed that interested parties value good data management practices, seek best practices for Al models, face uncertainty in managing Al models provided by third parties, and are challenged by implementing Al in the PQS framework

Keywords Pharmaceuticals, Manufacturing, Artificial intelligence, Data governance, Machine learning

Advanced manufacturing technologies (AMT) have aims to provide clarity and reduce uncertainty for interthe potential to improve the reliability and robustness ested parties using AMT to produce quality drugs and of manufacturing processes and supply chains and thus biological products. For purposes of this paper, all refincrease timely access to quality medicines. As AMT erences to drug or drugs include both human drugs and are emerging rapidly, FDA aims to foster a regulatory biological products. FRAME's goal is to identify potential framework that supports the adoption of AMT to benefit patients, keep pace with innovation, and support regulatory framework for AMT. FRAME's four priorities public health (FDA 2024). The Framework for Regulatory are to:

rilov myorsæfda hhs gov Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD 20993, USA Food and Drug Administration, Center for Biologics Evaluation

Advanced Manufacturing Evaluation (FRAME) initiative regulatory areas for consideration and foster the use of a

- Seek and analyze input to ensure that FDA's understanding of AMT for drugs is thorough and the analvsis of the regulatory framework is science- and risk-
- 2. Address risks to ensure that regulations and policy are compatible with future AMT

and Research, Silver Spring, MD 20993, USA

This is a U.S. Government work and not under copyright protection in the U.S. foreign copyright protection may apply 2025. **Open** Access this article is licensed under a Creative Commons Attribution 4.0 international License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original authority) and the source, roylde a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this ticle are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material if material is not cluded in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permit

Public feedback summary:

- Industry expressed a desire to broadly implement AI.
- Industry seeks assurance that regulations and policies are compatible with AI strategies.
- Industry feels that international harmonization will facilitate Al adoption.

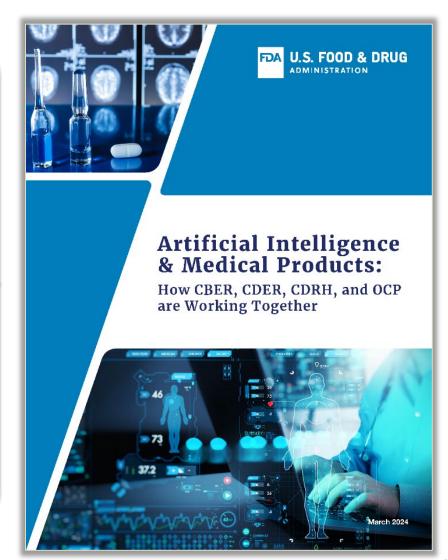
Key Findings from feedback:

- Industry values good data management practices
- Industry seeks best practices for machine-learning models, including development, validation and maintenance of AI models
- Industry may face uncertainty when managing third-party Al models
- Industry is challenged by implementation of AI in the pharmaceutical quality system framework

Artificial Intelligence at FDA

FDA

Advancing AI Regulatory Science


Foster Collaboration to Safeguard Public Health

Advance the Development of Regulatory Approaches that Support Innovation

Areas of Focus

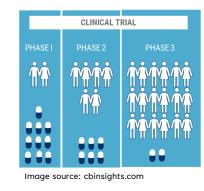
Promote the Development of Harmonized Standards, Guidelines, Best Practices, and Tools

Support Research Related to the Evaluation and Monitoring of Al Performance

10

Al Across the Product Life Cycle

Discovery


- Drug Target
 Identification,
 Selection, and
 Prioritization
- Compound Screening and Design

Nonclinical Research

- PK/PD and toxicologic studies
- Dose range finding

Clinical Research

- Dose range finding
- Site selection
- Recruitment and Retention
- Adherence
- Data collection, management, and analysis
- RWD analyses
- Clinical endpoint assessment

Manufacturing and Postmarket Safety Monitoring

- Advanced pharmaceutical manufacturing
- Post-market safety surveillance or pharmacovigilance (PV)

Artificial Intelligence at FDA

FDA's CDER has Received >500 Submissions with AI

	Year					
Submission Type (n)	2016	2017	2018	2019	2020	2021
IND	1	1	2	5	11	128
NDA, ANDA, BLA	-	-	1	2	2	2
DDT, CPIM	-	-	-	-	1	2
	Year					
Drug Development Stage (n)	2016	2017	2018	2019	2020	2021
Discovery and Development	-	-	_	-	1	3
Preclinical Research	-	-	-	-	-	8
Clinical Research	1	1	3	5	12	118
Post-Market Safety Monitoring	_	_	_	2	1	3

ABBREVIATIONS: Investigational New Drug (IND); New Drug Application (NDA), Abbreviated New Drug

Application (ANDA), Biologics License Application (BLA); Drug Development Tool (DDT) Qualification Programs,

Critical Path Innovation Meeting (CPIM)

SOURCE: Internal databases maintained by the FDA Center for Drug Evaluation and Research (CDER)

PERSPECTIVES

PERSPECTIVE

Landscape Analysis of the Application of Artificial Intelligence and Machine Learning in Regulatory Submissions for Drug Development From 2016 to 2021

Qi Liu1. , Ruihao Huang1. , Julie Hsieh1. , Hao Zhu1. , Mo Tiwari¹, Guansheng Liu¹, Daphney Jean¹, M. Khair ElZarrad², Tala Fakhouri², Steven Berman³, Billy Dunn³, Matthew C. Diamond⁴ and Shiew-Mei Huang 1

An analysis of regulatory submissions of drug and biological products to the US Food and Drug Administration from 2016 to 2021 demonstrated an increasing number of submissions that included artificial intelligence/machine learning (AI/ML). AI/ML 2016 and 2017, we identified only one such was used to perform a variety of tasks, such as informing drug discovery/repurposing, enhancing clinical trial design elements, dose optimization, enhancing adherence to drug regimen, endpoint/blomarker assessment, and postmarketing surveillance. Al/ ML is being increasingly explored to facilitate drug development.

rapid expansion of artificial intelligence/ to support drug development and regumachine learning (AI/ML) applications latory submissions to the US Food and

development. In 2019, Liu et al. provided Over the past decade, there has been a an overview of how AI/ML was used in biomedical research and therapeutic Drug Administration (FDA). The authors chiatry, gastroenterology, and neurology were

envisioned that AI/ML would play an increasingly important role in drug development.1 That prediction has now been confirmed by this landscape analysis based on drug and biologic regulatory submissions to the FDA from 2016 to 2021.

ML-RELATED SUBMISSIONS AT THE FDA'S CENTER FOR DRUG **EVALUATION AND RESEARCH**

This analysis was performed by search ing for submissions with key terms "machine learning" or "artificial intelligence" in Center for Drug Evaluation and Research (CDER) internal databases for Investigational New Drug applications, New Drug Applications, Abbreviated New Drug Applications, and Biologic License Applications, as well as submissions for Critical Path Innovation Meeting and the Drug Development Tools Program. We evaluated all data from 2016 to 2021. Figure 1a demonstrates that submissions with AI/ML components have increased rapidly in the past few years. In submission each year. From 2017 to 2020. the numbers of submissions increased by approximately twofold to threefold yearly. Then in 2021, the number of submissions increased sharply to 132 (approximately 10-fold as compared with that in 2020) This trend of increasing submissions with AI/ML components is consistent with our expectation based on the observed increas ing collaborations between the pharmaceutical and technology industries.

Figure 1b illustrates the distributions of these submissions by therapeutic area. Oncology, psy-

Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA: 20ffice of Medical Policy, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA; Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA; Digital Health Center of Excellence, Center for Devices and Radiological Health (CDRH), US Food and Drug Administration, Silver Spring, Maryland, USA These authors contributed equally

Received March 16, 2022; accepted May 19, 2022. doi:10.1002/cpt.2668

CLINICAL PHARMACOLOGY & THERAPELTICS | VOLUME 113 NUMBER 4 | Avril 2023

771

Some Al-related Publications

An examination of process models and model risk frameworks for pharmaceutical manufacturing, International Journal of Pharmaceutics (Aug '24)

- CDER, CBER, and EMA coauthors

Considerations for Big Data management in pharmaceutical manufacturing, Current Opinion in Chemical Engineering (Sept '24)

International Journal of Pharmaceutics: X 8 (2024) 100274 Contents lists available at ScienceDirect

International Journal of Pharmaceutics: X

An examination of process models and model risk frameworks for pharmaceutical manufacturing

Thomas F. O'Connor ", Sharmista Chatterjee", Johnny Lam Dolores Hernán Pérez de la Ossa , Leticia Martinez-Peyrat Adam C. Fisher

- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD 20993, U * Purposes Madicines Approx. Human Division. Domenico Scarlaminan 6, 2002 NS. she Nesherland
- surrepean sensiesten Agency, reseaus Ormono, Lorenteo Secretamant 6, 1902 16, der researant Prench National Agency for Medicines and Health Producte Safety, F-92055, Sato-Denie, Prence Quality Innovation Group (QSS), European Medicines Agency (EMA), American, the Netherland
- ING-MED (Medicines Evaluation Board), Utrecht, the Netherlands

ARTICLE INFO

Process models Model risk assessment Model validation

Process models are a growing tool for 4.0 pandigm promises to increase the a such as Artificial Intelligence (AI) migh trajectories. Several examples of proce the impact of the model on the quality of product lifecycle. Several regulatory do discusses existing risk-based framewo tions of applying a model risk frames manufacture of pharmaceuticals and bi-

In 2002, FDA laid the foundation for implementation of a modern, risk-based pharmaceutical quality assessment (U.S. Food and Drug tion, 2004). Part of FDA's initiative encouraged manufac turers to use the latest scientific advances in pharmaceutical manufacturing technology throughout the lifecycle of a product to improve the efficiency of developing and manufacturing drugs. This has also been encouraged by EU as part of the EU directive 2001/83 and various CHMP (Committee for Medicinal Products for Human Use) guidelines e.g., CHMP guideline on manufacture of the finished dosage form (EU CHMP, 2015). As scientific and engineering knowledge about pharmaceutical manufacturing has grown, the use of models to aid process development, enhance process control and forecast future process and product quality outcomes has increased. The types of models

 Corresponding author. E-mail address: thomas occurrer@fda.hhs.gov (T.F. O'Connor)

Received 31 May 2024; Received in revised form 5 August 2024; Accepted 5 August 2024

2590-1567/Published by Elsevier B.V. This is an open access article under the CC BY-NC-NI

ScienceDirect

Considerations for Big Data management in pharmaceutical manufacturing

Javanti Das1, Adam C Fisher1, Lisa Hughev1 Thomas F O'Connor¹, Vidya Pai¹, Cinque Soto² and John Wan

Big Data technologies are advancing the manufacturing of drug and biological products. Such technologies include innovative software and computational methods for data storage, mining and analytics. Increasingly vast, complex data sets are being for statistical analysis and decision-making, Implementing Big Data technologies, however, can introduce new challenges for organizations in areas of data generation, architecture, and security. Big Data management includes implementing robust storage, complex data integration, and state-of-the-art analysis software. Upholding data integrity and security might require designing a modernized risk-based framework plan for the organization. Once these challenges are successfully addressed, the incorporation of Big Data technologies into pharmaceutical manufacturing is expected to enable more efficient production, lower costs, and greater quality control,

resulting in a stronger global pharmaceutical supply chain. Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD 20993, United States of America Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD 20993, United States of America

This review comes from a themed issue on Pharmaceutical

2211-3396/ID 2024 Published by Elseyler Ltd.

Introduction

The landscape of manufacturing is becoming increa ingly data-rich with the progression of analytical tech nology tools. Industrial Internet of Things (IIoT) devices, sensors, and integrated processes. Transforming this constant stream of Big Data into practical knowledge, however, is a complex endeavor, and digi talization poses an array of challenges. Building a robust and flexible data infrastructure that supports the profi cient gathering and analysis of data can overcome these challenges and offer opportunities for innovation and customization. The NIST Big Data Interoperability Framework defines Big Data as "consisting of extensive datasets, primarily characterized by volume, variety velocity, and/or variability that requires a scalable architecture for efficient storage, manipulation, and analysis" [1]. In fact, the entire realm of available data. known as the dataspheres, is growing at an exponent rate, with estimates indicating that by 2025, it could produce upwards of 180 zettabytes of data [2]. In the advanced manufacturing industry, the integration of vast amounts of information from various sources, such as sensors, production lines, and monitoring and maintenance equipment, enables supply chain manufacturers to predict maintenance needs, optimize production processes and enhance product quality. To achieve hese modernization benefits, the augmented data volume and complexity require robust data management, security, and analysis tools. Any skills gap in the workforce for handling sophisticated data analytics technologies poses a considerable challenge that manufacturers must overcome to fully leverage the benefits of Big Data in advanced manufacturing.

With Big Data impacting manufacturing decisions, up holding the integrity of this data is critical for operational success. Data integrity refers to the accuracy, com pleteness, and quality of the data sets [1]. Regulators scholars, and industry professionals are now tackling a wide spectrum of challenges in the data lifecycle, including discerning the data critical for a thorough understanding of operations, procuring available data, identifying the most efficient data collection techniques, and organizing data strategically. The issue of data se curity demands attention due to the extensive array of the data, which heightens the risk of breach. For endusers to leverage data for a competitive advantage, a robust, secure, and flexible data infrastructure migh support proficient data collection and analysis [3] Manufacturing pharmaceuticals brings unique require-ments that need to be fulfilled with Big Data platforms, quality standards to comply with applicable regulations

www.fda.gov

Considerations for the Use of Artificial Intelligence to Support Regulatory Decision-Making for Drug and Biological Products

Guidance for Industry and Other Interested Parties

DRAFT GUIDANCE

This guidance document is being distributed for comment purposes only.

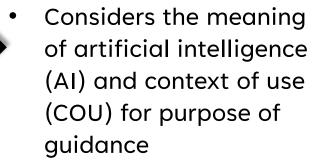
Comments and suggestions regarding this draft document should be submitted within 90 days of publication in the Federal Register of the notice announcing the availability of the draft guidance. Submit electronic comments to https://www.regulations.gov. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register.

For questions regarding this draft document, contact (CDER) Tala Fakhouri, 301-837-7407; (CBER) Office of Communication, Outreach and Development, 800-835-4709 or 240-402-8010; or (CDRH) Digital Health Center of Excellence, digitalhealth@fda.hhs.gov.

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Drug Evaluation and Research (CDER)
Center for Biologics Evaluation and Research (CBER)
Center for Devices and Radiological Health (CDRH)
Center for Veterinary Medicine (CVM)
Oncology Center of Excellence (OCE)
Office of Combination Products (OCP)
Office of Inspections and Investigations (OII)

January 2025 Artificial Intelligence

- Provides recommendations on the use of AI to produce information or data to support regulatory decision-making regarding safety, effectiveness, or quality for drugs.
- Provides a risk-based credibility assessment framework to establish and evaluate the credibility of an AI model for a particular context of use (COU):
 - Sufficiently credible for a particular context of use
 - Supported with the appropriate level of evidence



I. INTRODUCTION

- II. SCOPE
- III. BACKGROUND

- A. A Risk-Based Credibility Assessment Framework
- B. Special Consideration: Life Cycle Maintenance of the Credibility of Al Model Outputs in Certain Contexts of Use
- C. Early Engagement

 Topic of guidance is primarily a risk-based creditability assessment framework (RCAF) to establish the credibility of an AI model for a particular COU

INTRODUCTION

II. SCOPE

III. BACKGROUND

IV. CONSIDERATIONS FOR AI USE IN THE DRUG PRODUCT LIFE CYCLE

- A. A Risk-Based Credibility Assessment Framework
- B. Special Consideration: Life Cycle Maintenance of the Credibility of Al Model Outputs in Certain Contexts of Use
- C. Early Engagement

- Al used to produce information that supports regulatory decision-making for safety, effectiveness, or quality of drugs; not for drug discovery or operational efficiencies
- RCAF intended to help those to plan, gather, organize, and document information to establish credibility of AI models when used to product information/data to support regulatory decisionmaking

- INTRODUCTION
- II. SCOPE

III. BACKGROUND

- IV. CONSIDERATIONS FOR AI USE IN THE DRUG PRODUCT LIFE CYCLE
 - A. A Risk-Based Credibility Assessment Framework
 - B. Special Consideration: Life Cycle Maintenance of the Credibility of Al Model Outputs in Certain Contexts of Use
 - C. Early Engagement

- Provides examples regarding AI uses to support regulatory decision-making
- Outlines unique challenges inherent to AI, including training data, interpretability, and data and model drift

- I. INTRODUCTION
- II. SCOPE
- III. BACKGROUND

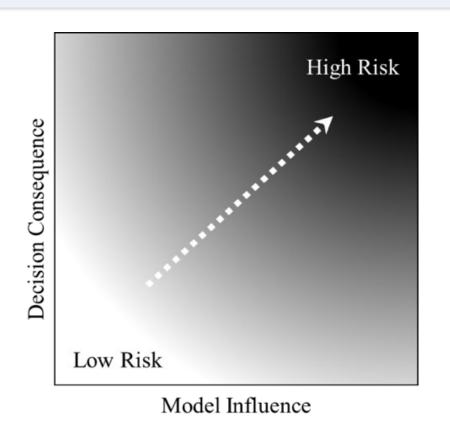
IV. CONSIDERATIONS FOR AI USE IN THE DRUG PRODUCT LIFE CYCLE

- A. A Risk-Based Credibility Assessment Framework
- B. Special Consideration: Life Cycle Maintenance of the Credibility of Al Model Outputs in Certain Contexts of Use
- C. Early Engagement

- I. INTRODUCTION
- II. SCOPE
- III. BACKGROUND
- IV. CONSIDERATIONS FOR AI USE IN THE DRUG PRODUCT LIFE CYCLE
 - A. A Risk-Based Credibility Assessment Framework
 - B. Special Consideration: Life Cycle Maintenance of the Credibility of Al Model Outputs in Certain Contexts of Use
 - C. Early Engagement

- Informed by the structure of the ASME V&V40
- Consistent with the CDRH guidance on AI-enabled medical devices

CONSIDERATIONS FOR AI USE IN THE DRUG PRODUCT LIFE CYCLE


A. A Risk-Based Credibility Assessment Framework

- 1. Step 1: Define the Question of Interest
- 2. Step 2: Define the Context of Use for the AI Model
- 3. Step 3: Assess the AI Model Risk
- 4. Step 4: Develop a Plan to Establish AI Model Credibility Within the Context of Use
 - a. Describe the model and the model development process
 - Describe the model
 - ii. Describe the data used to develop the model
 - iii. Describe the model training
 - b. Describe the model evaluation process
- 5. Step 5: Execute the Plan
- 6. Step 6: Document the Results of the Credibility Assessment Plan and Discuss Deviations From the Plan
- 7. Step 7: Determine the Adequacy of the AI Model for the Context of Use

Artificial Intelligence at FDA

A Risk-Based Approach, Anchored in the Context of Use

Depending on model risk, the level and stringency of "credibility evidence" may differ

Model risk matrix. The model risk moves from low to high as decision consequence or model influence increases. The ratings for model influence and decision consequence are determined independently.

21

- I. INTRODUCTION
- II. SCOPE
- III. BACKGROUND

IV. CONSIDERATIONS FOR AI USE IN THE DRUG PRODUCT LIFE CYCLE

- A. A Risk-Based Credibility Assessment Framework
- B. Special Consideration: Life Cycle Maintenance of the Credibility of Al Model Outputs in Certain Contexts of Use
- C. Early Engagement

Life Cycle Maintenance of the Credibility of Al Model Outputs in Certain COU

- Life cycle maintenance refers to the management of changes to AI models to ensure the model remains fit for use over the drug product life cycle for its COU and a set of planned activities
- A risk-based approach for life cycle maintenance may help sponsors assess the impact of a change or changes to the AI model performance.
- Detailed plans about life cycle maintenance should be made available for review as a component of the manufacturing site's pharmaceutical quality system.

- I. INTRODUCTION
- II. SCOPE
- III. BACKGROUND

IV. CONSIDERATIONS FOR AI USE IN THE DRUG PRODUCT LIFE CYCLE

- A. A Risk-Based Credibility Assessment Framework
- B. Special Consideration: Life Cycle Maintenance of the Credibility of Al Model Outputs in Certain Contexts of Use
- C. Early Engagement

Early Engagement

- FDA strongly encourages sponsors and other interested parties to engage early with FDA to set expectations regarding the appropriate credibility assessment activities for the proposed model based on model risk and COU.
- Various options can be used to engage with the Agency, depending on how the sponsor or other interested parties intend to use the AI model.
 - Sponsors may request appropriate formal meetings (INTERACT, pre-IND) to discuss the use of AI for a specific development program
 - Engagement options other than formal meetings

Engagement Options Other Than Formal Meetings

- 1. Center for Clinical Trial Innovation (C3TI)
- 2. Complex Innovative Trial Design (CID) Meeting Program
- 3. Drug Development Tools (DDTs) and Innovative Science and Technology Approaches for New Drugs (ISTAND)
- 4. Digital Health Technologies (DHTs) Program
- 5. Emerging Drug Safety Technology Program (EDSTP)
- 6. CDER's Emerging Technology Program (ETP) and **CBER's Advanced Technologies Team (CATT)**
- 7. Model-Informed Drug Development (MIDD) Paired Meeting Program
- 8. Real-World Evidence (RWE) Program

Inquiries to CBER Regarding Artificial Intelligence

Engaging with CBER

- **FDA Web Sites**
 - Focus Area: Artificial Intelligence | FDA
 - Artificial Intelligence and Medical Products | FDA
- **CBER Web Site**
 - Artificial Intelligence and Machine Learning (AI/ML) for Biological and Other Products Regulated by CBER | FDA
- For specific uses in regulatory submissions:
 - Contact assigned RPM or Office with product responsibility well in advance of intended use
 - Request a formal meeting
- For broader application in manufacturing, or novel products:

- CBER Advanced Technologies Team (CATT)
- For general AI inquiries:
 - OCOD@fda.hhs.gov

Closing Thoughts

- Whenever appropriate, all centers are coordinating and collaborating on AI efforts, with leverage of multi-disciplinary expertise
- FDA evidentiary standards are the same, independent of the technology
- A risk-based approach towards the application of AI in drug development is critical to foster innovation and protect the public
- AI in drug and biological product development has great potential, and we must ensure its safe and effective application
- AI is also driving advances and innovations in regulatory science
- Early engagement with FDA and CBER is highly encouraged

Contact Information

Johnny Lam, PhD

Johnny.lam@fda.hhs.gov

Regulatory Questions:

OTP Main Line – 240 402 8190

Email: OTPRPMS@fda.hhs.gov

OTP Learn Webinar Series:

http://www.fda.gov/BiologicsBloodVaccines/NewsEvents/ucm232821.htm

CBER website: www.fda.gov/BiologicsBloodVaccines/default.htm

Phone: 1-800-835-4709 or 240-402-8010

Consumer Affairs Branch: <u>ocod@fda.hhs.gov</u>

Manufacturers Assistance and Technical Training Branch: <u>industry.biologics@fda.gov</u>

Follow us on X: https://www.x.com/fdacber

