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A common Al problem in biomedicine:
Given features X, predict Y.
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= Our solution: Explaiable Al (XAl)



Our solution was to fundamentally advance Al
research to make a prediction with explanations

= Accuracy vs. interpretability

= Simple models often lead to lower performance.
* Complex models are often considered to be a black box.
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) Scott, CSE PhD’19

Lundberg & Lee. Neural Information Processing Systems (NeurlPS) Oral (2017) — Cited 50,000+ times ’



Explainable Al (XAIl): Accurately predicting an outcome
is vital, but the critical question revolves around why.

Pati Al model
atient
Features X  —

Outcomes Y

Regenerative

Clinical data therapy response
(age, sex, BMI, Y
comorbidities) “favorable”
Functional
Molecular data ' ’s di
| , Part | Use case:Alzheimer’s disease
omics data Tissue ) , : :
environment = Which features are true biomarkers or disease drivers?
Imaging data = Clinical images represent a complex modality. Part 2
(MRI/C T/ulera * How do we know Al models are performing correctly?
sound)

= Can we make the process more cost-aware!

Lundberg et al. Nature Machine Intelligence, 2020 — Featured on the Cover
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mechanistic explanation
AD) phenotypes

Outcomes Y

Neuropathological
phenotypes:

Y AB, Tau, CERAD score,
Plaque counts, Braak
stage, tangle counts

= Estimate each gene’s
contribution to AD
neuropathologies

" Previously unknown sex-
differential immune response
(microglia activity) in AD



Biologically interpretable Al modeling further
advances data-driven discovery

(A) Concept layer (pathways)
Sparse modules

* [ndividual genes are not as interpretable as
functional units (e.g., pathway)

= Unsupervised modeling enables the \\ — O

incorporation of unlabeled data ik
= XAl can pinpoint important genes that explain the \ 'I.:!i:.. — O

expression variation within the dataset
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Janizek et al. Genome Biology, 2023 * Joe, UW MSTP/CSE PhD’22, Residency at Stanford Radiology



Collaboration with UW Laboratory Medicine & Pathology (Matt Kaeberlein)

Biologically interpretable Al modeling identifies
experimentally validated AD therapeutic targets

(A) Concept layer (pathways)
Sparse modules

" We applied our approach to extended bulk
RNAseq datasets from AD study cohorts
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= In vivo validation in a transgenic C. elegans model
expressing AB done by Matt Kaeberlein’s lab

A promising pharmacological avenue!
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Janizek et al. Genome Biology, 2023



Contrastive modeling enhances interpretability

= Single-cell datasets are often collected to investigate differences in cellular
state between background cells and those under specific treatments
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Contrastive modeling enhances interpretability

m Cancer cells treated with idasanutlin vs.

untreated as background

= Cells behave differently in salient space
depending on their TP53 mutation status

Important implications for
personalized medicine!

= How about AD vs. control brain tissue?

* What drives neurodegeneration (in
collaboration with Jessica Young)

= What drives biological aging process!?
(Jessica Young & Suman Jayadev)

Weinberger,* Lin,* and Lee. Nature Methods, 2023
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Outline — Two parts

* Part | — ldentifying disease-driving genes and processes

= Unveiling neurodegenerative disease insights with explainable Al
[Nature Comm’2 | ; Genome Biology’23; Nature Methods’23]

* Part 2 — Auditing Al models
= Feature attributions [Nature MI'2| featured in Nature22]

@

* Counterfactual explanations (via generative Al) [Nature BME’25 cover; Lancet’24]

= Concept-based explanations (via foundation models) [Nature Medicine’24]

Our explainable Al techniques are generalizable to a wide range of biomedical
problems, including regenerative medicine.



Auditing Al for COVID-19 detection using XAl

= Many published Al models that detect COVID-19 T

XAl helped us to stop the field from moving in the wrong

direction - There were 6 published papers and hundreds of related
models out there that learned the shortcuts.

T U. T 0.006
| 99th External:0.76 + 0.04
B Many kinds of analyses for model 0.0 +——1—7—7—
A . 00 02 04 06 08 1.0
auditing presented in the paper!
v 1V Clear lung bases predict negative COVID-19 status
A T X laterality markers should not predict negative status

X medical devices should not predict negative status

oth




Our Al auditing work featured in Nature

= “Breaking into the black box of artificial intelligence” Nature Outlook

Bre‘afl‘ki'n,lg.inttilt.heblackboxof UW MSTP / CSE PhD
it s Joe Janizek (Just
| matched to Stanford)
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UW MSTP/CSE PhD
student Alex Degrave

Alex DeGrave and Joseph Janizek are students on the Medical Scientist Training Program at the University

of Washington, in Seattle. Credit: Alex DeGrave

DeGrave,* Janizek™ et al. Nature Machine Intelligence, 2021



Collaboration with Stanford DBDS / Dermatology (Roxana Daneshjou)

Further digging into the flaws in the reasoning
processes of clinical Al — dermatology

= Auditing Al models to predict skin cancer

= Five models — 2 academic models, 2 commercial devices, and
| competition winner D

" Technical challenges — saliency maps often do not work

Original image Saliency map Modified image Our solution:

* Generate counterfactual images
from the Al model
= Systematic characterization by

&

experts: Drs. Roxana Daneshjou,
and Zhuo Ran Cai (Stanford)

DeGrave et al. (Nature Biomedical Engineering)
Predicted: benign Predicted: malignant  Kim et al. (Nature Medicine, 2024)



Collaboration with Stanford DBDS / Dermatology (Roxana Daneshjou)

How do dermatology Al systems make decisions
On dermOSCOPI C I e e e e
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The Lancet perspective

“The clinical potential of

counterfactual Al”

by Su-In Lee and Eric Topol

Digital medicine

The clinical potential of counterfactual Al models

Clinicians  frequently use conditional reasoning for
treatment decisions by envisioning potential outcomes for
patients. This is counterfactual thinking, exploring “what if”
scenarios. Developments in generative artificial intelligence
(Al) enable us to simulate this patient-level reasoning at
the data level, opening new opportunities for science and
health care. We term this approach counterfactual Al.

This approach is exemplified by use of counterfactual
images in dermatology. Using Al, original skin images were
modified to resemble melanoma guided by the decision-
making process of a particular Al-based dermatological
classifier. Dermatologists were then tasked with identifying
clinically relevant features in the counterfactual images of
melanoma and normal conditions. This process elucidated
the reasoning processes of five Al-based dermatological
classifiers. This data-centric counterfactual Al aligns the
reasoning processes of Al classifiers with human clinicians’
intuition, establishing a new approach to auditing clinical
Al classifiers. Model auditing provides insights into the
performance of deployed clinical Al classifiers for patients,
clinicians, requlators, and data scientists.

Al model focuses on (figure). Yet they provide only a partial
view of the inner workings of complex Al models, impeding
efforts to identify flaws in clinical Al reasoning processes.
Counterfactual Al expands the scope of explainable Al by
providing counterfactual images that elicit specific outcome
predictions from complex Al classifiers (figure), enabling
humans to grasp more comprehensive insights into the
reasoning processes of these classifiers. Collaborating with
clinicians, counterfactual Al could unearth previously un-
noticed image attributes. Research indicates that by partner-
ing with Al methods capable of automatically annotating
images with an array of semantically meaningful concepts,
counterfactual Al can systematically probe Al classifiers about
how these concepts affect their decision-making processes.
Counterfactual Al in medicine faces ethical concerns and
challenges related to fairness, data quality, and generali-
sability. Obtaining high-quality, diverse datasets is difficult.
Generalising to new data is also problematic, particularly
across diverse patient populations and health-care settings.
Moreover, ethical and regulatory issues, including patient
privacy concerns about the use of training data, must be

CrossMark

Further reading

DeGrave AJ, Cai ZR, Janizel
Daneshjou R, Lee SI. Audit
inference processes of me
image classifiers by levera
generative Al and the exp
of physicians. Nat Biomed
2023; published online De
https://doi.org/10.1038/
$41551-023-01160-9

Nature Reviews

Bioengineering, 2025

Medical Al transparency in the

entire life cycle

nature reviews bioengineering

Review article

https://doi.org/10.1038/s44222-025-00363-w

W Check for updates

Transparency of medical artificial

intelligence systems

Chanwoo Kim®'2, Soham U. Gadgil®"? & Su-In Lee'

Abstract

Sections

Medical artificial intelligence (Al) systems hold promise for transforming
healthcare by supporting clinical decision-making in diagnostics and
treatment. The effective deployment of medical Al requires trust among
key stakeholders — including patients, providers, developers and
regulators —which can be built by ensuring transparency in medical Al,
includinginits design, operation and outcomes. However, many Al

Introduction

Data transparency

Model transparency

Deployment transparency

Outlook




Outline — Two parts

* Part | — ldentifying disease-driving genes and processes

= Unveiling neurodegenerative disease insights with explainable Al
[Nature Comm’2 |; Genome Biology’23; Nature Methods’23]

* Part 2 — Auditing Al models
= Feature attributions [Nature MI'2| featured in Nature22]
* Counterfactual explanations (via generative Al) [Nature BME’25 cover; Lancet’24]
= Concept-based explanations (via foundation models) [Nature Medicine’24]

Our explainable Al techniques are generalizable to a wide range of biomedical
problems, including regenerative medicine.



Al for bioMedical Sciences (AIMS) Lab
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