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A common AI problem in biomedicine: 
Given features X, predict Y.
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omics data  A more actionable question: Which components of X 

should we intervene on to improve Y?

 The missing piece: Why was a certain prediction made?

 The challenge: AI models are often black boxes.

 Our solution: Explaiable AI (XAI)



Our solution was to fundamentally advance AI 
research to make a prediction with explanations
 Accuracy vs. interpretability
 Simple models often lead to lower performance.
 Complex models are often considered to be a black box.
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SHAP can estimate feature importance 
for a particular prediction for any model.

Lundberg & Lee. Neural Information Processing Systems (NeurIPS) Oral (2017) – Cited 50,000+ times
Scott, CSE PhD’19
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Explainable AI (XAI): Accurately predicting an outcome 
is vital, but the critical question revolves around why.

Lundberg et al. Nature Machine Intelligence, 2020 – Featured on the Cover
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 Which features are true biomarkers or disease drivers?
 Clinical images represent a complex modality.
 How do we know AI models are performing correctly?
 Can we make the process more cost-aware?
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Use case: Alzheimer’s disease



The key question is the mechanistic explanation 
of Alzheimer’s disease (AD) phenotypes
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 Estimate each gene’s 
contribution to AD 
neuropathologies 
 Previously unknown sex-

differential immune response 
(microglia activity) in AD

Beebe-Wang et al. Nature Communications, 2021 CSE PhD’22
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Biologically interpretable AI modeling further 
advances data-driven discovery
 Individual genes are not as interpretable as 

functional units (e.g., pathway)

 Unsupervised modeling enables the 
incorporation of unlabeled data
 XAI can pinpoint important genes that explain the 

expression variation within the dataset

Janizek et al. Genome Biology, 2023
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Joe, UW MSTP/CSE PhD’22, Residency at Stanford Radiology



Biologically interpretable AI modeling identifies 
experimentally validated AD therapeutic targets 
 We applied our approach to extended bulk 

RNAseq datasets from AD study cohorts

 We identified mitochondrial complex I as a 
potential mediator for tolerance to Aβ toxicity
 In vivo validation in a transgenic C. elegans model 

expressing Aβ done by Matt Kaeberlein’s lab

A promising pharmacological avenue!

Capsaicin

Janizek et al. Genome Biology, 2023
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Collaboration with UW Laboratory Medicine & Pathology (Matt Kaeberlein)



Contrastive modeling enhances interpretability

 Single-cell datasets are often collected to investigate differences in cellular 
state between background cells and those under specific treatments 

Contrastive Analysis
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Weinberger,* Lin,* and Lee. Nature Methods, 2023
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Contrastive modeling enhances interpretability

 Cancer cells treated with idasanutlin vs. 
untreated as background
 Cells behave differently in salient space 

depending on their TP53 mutation status 

 How about AD vs. control brain tissue?
 What drives neurodegeneration (in 

collaboration with Jessica Young)

 What drives biological aging process? 
(Jessica Young & Suman Jayadev)
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TP53 mutation vs. 
wild type separation

 
    

   

Cell type separation 
in the shared space

Weinberger,* Lin,* and Lee. Nature Methods, 2023

Important implications for 
personalized medicine!
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Outline – Two parts

 Part 1 – Identifying disease-driving genes and processes
 Unveiling neurodegenerative disease insights with explainable AI  

 [Nature Comm’21 ; Genome Biology’23; Nature Methods’23]

 Part 2 – Auditing AI models
 Feature attributions [Nature MI’21 featured in Nature’22]
 Counterfactual explanations (via generative AI) [Nature BME’25 cover; Lancet’24]
 Concept-based explanations (via foundation models) [Nature Medicine’24] 

Our explainable AI techniques are generalizable to a wide range of biomedical 
problems, including regenerative medicine.

Y 

𝝓𝝓𝟏𝟏(𝒇𝒇,𝒙𝒙) 

𝜙𝜙𝑝𝑝(𝑓𝑓, 𝑥𝑥) 

-
-

-

X1
X2
:

Xp



Auditing AI for COVID-19 detection using XAI

 Many published AI models that detect COVID-19 
rely on “shortcuts” rather than genuine pathology

 XAI can highlight what is important for the 
model’s predictions – saliency map

DeGrave,* Janizek* et al. Nature Machine Intelligence, 2021; featured in Nature, 2022

✓ Clear lung bases predict negative COVID-19 status

✗ laterality markers should not predict negative status

✗ medical devices should not predict negative status

Many kinds of analyses for model 
auditing presented in the paper!

XAI helped us to stop the field from moving in the wrong 
direction – There were 6 published papers and hundreds of related 
models out there that learned the shortcuts.

MSTP / CSE PhD
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Our AI auditing work featured in Nature 

DeGrave,* Janizek* et al. Nature Machine Intelligence, 2021

 “Breaking into the black box of artificial intelligence” Nature Outlook

UW MSTP/CSE PhD 
student Alex Degrave

UW MSTP / CSE PhD 
Joe Janizek (Just 
matched to Stanford)
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Important to go 
beyond localization

 Auditing AI models to predict skin cancer 
 Five models – 2 academic models, 2 commercial devices, and 

1 competition winner

 Technical challenges – saliency maps often do not work 

Important to go 
beyond 

localization

Predicted: benign

Original image Saliency map Modified image

Predicted: malignant

Our solution:
 Generate counterfactual images 

from the AI model
 Systematic characterization by 

experts: Drs. Roxana Daneshjou, 
and Zhuo Ran Cai (Stanford)

Further digging into the flaws in the reasoning 
processes of clinical AI – dermatology

DeGrave et al. (Nature Biomedical Engineering)
Kim et al. (Nature Medicine, 2024)

Collaboration with Stanford DBDS / Dermatology (Roxana Daneshjou)



How do dermatology AI systems make decisions 
on dermoscopic images?

Degrave, Ran Cai, Janizek, Daneshjou,* and Lee* Nature Biomedical Engineering, 2025

Alex, 
MSTP / 
CSE PhD

Collaboration with Stanford DBDS / Dermatology (Roxana Daneshjou)



The Lancet perspective

“The clinical potential of 
counterfactual AI” 
 by Su-In Lee and Eric Topol

15

Nature Reviews 
Bioengineering, 2025
Medical AI transparency in the 
entire life cycle
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