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DOE's Legacy Sites
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- Remediatiorizof DOE’s remaining large and%bmbmplex) groundwater
contamination will take decades.

« GAO estimates EM'’s liability for environmental cleanup across the
country will exceed $550 billion



Soil and Groundwater Contamination

« Superfund Sites: >1300 sites (organic/metal/radioactive)
 Brownfield Sites: ~450,000
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>900 Superfund sites remalnmg after 30+-yr remediation

- Challenge of Iow-concentratian Iarge-vojume plume
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Environmental Remediation: Evolution

Maturity

Trade offs: Contaminant

.~ Growth removal vs
Maturity
Recycle . Waste
Reuse .
Dig _ Transform . CO02 emission
Pump Biodegrade . Energy Use
Birth Bury = .
( Burn . Ecological Impacts
T : . . Noise, Air pollution
Intensive Sustainable

Wastes ———  Treatments ——— Methods

1960 1990 2020

Sustainable Remediation Forum (SURF), "Integrating sustainable principles,
practices, and metrics into remediation projects"”, Remediation Journal, 19(3), pp 5 -
114, editors P. Hadley and D. Ellis, Summer 2009



Sustainable Remediation

. Minimize waste/pollution/energy-use/water-use/ecological damages
. Biodegradation, immobilization

. Monitored natural attenuation

. Longer institutional control with alternative/attractive end-use

-> Long-term monitoring




Environmental Monitoring

Data/evidence provides assurance to
local communities

Detection of anomalies if they happen
Critical ways to keep operators
accountable/responsible

Tackle misinformation and fake news
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(People are skeptical of modeling results)



Advanced Long-term Environmental Monitoring Systems

ML/AI

‘ L,

www.srnl.gov/fact-sheets/altemis/ .
Modeling

New paradigm for
long-term monitoring



Savannah River Site F-Area: Testbed

* Disposal activities:

U-238 Plume
_ _ S'::’:ae Upper Aquifer Zone
— Low-level radioactive waste from e
PUREX prOCeSS (1955—1 989) Funn?and-Gate
— Nitric acid plume: pH 3-3.5, U, I
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 Remediation approaches / 45
— Pump & treat (the filters became
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Guided by Real-world Observations

DOE Mound Site

Canonsburg Data

- Dewatering for construction

nearby o T
- Shift in the groundwater table 2 ~
and plume direction SR tas h SSSSE S
DOE Canonsburg Site
- Groundwater fluctuation

associated with river stages
- Contaminant concentration B e

changes (hard to explain with -> Importance of hydrology (e.g., water

sparse measurements) table) for contaminant mobility and
- Extreme weathers? plume migration



Guided by Real-world Observations

DOE Savannah River Site F-Area
- Pump-and-treat system
- Re-injection increased cations - Sr-90 concentrations increased
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- Importance of in situ measurable proxies (e.g., electrical conductivity)




Current Groundwater Monitoring

 Groundwater Sampling - Laboratory Measurements

 Expensive: 10s — 100s of wells
« Contamination issues (requires training, equipment)
« Temporally sparse: every quarterly, annually - Miss anomalies

« Compliance only (no analytics)

well

12



In situ Real-time Monitoring Strategies

 Low-cost In situ sensors, wireless network, cloud computing
- Continuous monitoring of in situ variables
—> Detect changes real-time = Reactive Monitoring - Proactive Monitoring
- Reduce monitoring cost

-
1
. | @)
E
[ T data logger phone tower
& modem Machine Learning
Sensors computer
/_ Water Table Contaminant
- pH concentrations

Redox Schmidt et al., 2018

well - Electrical Conductivity (EC)

Big Data 13



Data Analytics Workflow

Variables factor map (PCA)
P NS g Exploratory Data Analysis
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Schmidt et al., 2018
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Machine learning improves
contamination monitoring

BY MATT LEOMARD | AUMG 74, 2008

Eficincy & Ersdronmaond

Scientists develop new meth(
to track groundwater
pollutants in real-time

It is expected to reduce the frequency of manual grﬂundvE
M

Because groundwater is susceptible to pollution from automotive fuel, fertilizer ar
naturally occurring substances Like iron, the Environmental Protection Agency and its

sampling and lab analysis and thersefore cut the monitori , .
state-level counterparts conduct annual or quarterly =ampling and analysis.
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PyLEnM: A Machine Learning Framework for Long-Term
Groundwater Contamination Monitoring Strategies

Aurelien O. Meray, Savannah Sturla, Masudur R. Siddiquee, Rebecca Serata, Sebastian Uhlemann,
Hansell Gonzalez-Raymat, Miles Denham, Himanshu Upadhyay, Leonel E. Lagos, Carol Eddy-Dilek,
and Haruko M. Wainwright™*

Cite This: Environ. Sci. Technol. 2022, 56, 5973-5983 Read Online

ACC ESS | M Metrics & More | Article Recommendations | @ Supporting Information
ABSTRACT: In this study, we have developed a comprehensive machine =4
learning (ML) framework for long-term groundwater contamination Data

monitoring as the Python package PyLEnM (Python for Long-term -
Environmental Monitoring). PyLEnM aims to establish the seamless data- ~B
P & N
similar groundwater dynamics and to inform spatial interpolation and well
optimization, (2) the automated model selection and parameter tuning,

to-ML pipeline with various utility functions, such as quality assurance and
comparing multiple regression models for spatial interpolation, (3) the proxy-based spatial interpolation method by including spatial

quality control (QA/QC), coincident/colocated data identification, the
automated ingestion and processing of publicly available spatial data layers,
and novel data summarization/visualization. The key ML innovations include
(1) time series/multianalyte clustering to find the well groups that have



PyLenM: Python for Long-term Env. Monitoring

Preprocess &
Exploration

Optimization

Unsupervised



PyLenM: Supervised Learning

Elevation Groundwater table

1.83
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* Proxy variables
 LIDAR elevation data
« Topographic metrics (slope etc)
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- o

1.77 ~

4365 4370 4365 4370
Easting (NADS3), m x10° Easting (NAD83), m x10°

 |n situ measurable SC
- tritium concentration

« Comparison of multiple ML
regression methods



PyLenM: Supervised Learning

Elevation Groundwater table
« Spatiotemporal Interpolation | |2
« Groundwater table _
« Contaminant concentration  :
 Proxy variables
¢ LIDAR elevathn data 3.6810 — — - — s

« Topographic metrics (slope etc) s R0
» Distance from the source SC > Tritium Proxy-based Tritium map
* In situ measurable SC
- tritium concentration
- Comparison of multiple ML
regression methods

True Tritium value Easting (NADS83), m X 10"_‘



PyLenM: Well Placement Optimization

52

Sub-selection of wells for .., .

long-term monitoring ” 0

Greedy algorithm ; o

* Reference map created 7
using all the wells L s g NADELm 10 g ADED  xi

* Interpolation with one | e " Seoudwels (013 L Sl (613

Selected wells [14-22] Selected wells [14-22]

addItIOna| We” at a tlme 51 e Selected wells [23-30]
* Find the well that minimize ¢
the overall error 5
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In situ Data Monitoring: Proxy-based Estimation










Vulnerability Zone Concept

Source zone Treatment zone Seep zone/wetland
Surface barriers In situ remedies ast line of defense
Contaminant accumulation

Denham et al., 0220
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Cap/Surface Barrier Monitoring

buried electrode shallow buried

to ERT surface electrodes
instrUmEntation cable —
Backfil R

(Target Imaging Zone)

borehole electrodes "'ﬂf 3682060 :
1--‘“""'"’—'# £ 3882040 A8

o 368202058
£ 3682000

= 3681980

Log 10 Cond. (S/m)

S5e-4 2e-3 1a.2

Cap/Surface Barrier
- Limit infiltration oo f
- Concerns: plants, animals, erosions

436560 436600 436640 436680 436700

Easting {m)

Electrical Resistivity tomography ;;;fjf’;“
monitoring S A - ;

- Electrodes at and below the surface
- Image and detect anomalies
continuously

Johnson et al., 2022



Groundwater Seep Zone Monitoring

Last line of defense

- Clay/organic-rich soil

- Sequester/accumulate contaminants

-> Vulnerability: changes in geochemistry etc

Geochemical characterization
Distributed sensor network
Geophysics
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Simulation Intelligence: Simulations x ML/AI

Climate Change Impact on Physics-informed interpolation
Groundwater contamination - Model-data integration with

- Emulator with Fourier Neural Bayesian hierarchical model
Operator

Extreme preapltatlon
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Easting (NAD83), m

Lavin, A., Zenil, H., Paige, B., Krakauer, D., Gottschlich, J., Mattson, T., ... & Pfeffer, A. (2021). Simulation mtelhgence
Towards a new generation of scientific methods. arXiv preprint arXiv:21 12 03235.



Climate Change Impacts on Contamination

Higher precipitation

N - Re-mobilize residual
Extreme precipitation contaminants?
et 7 & - Dilute concentrations?

2 > Change management strategies?
- Change monitoring configuration?

- But computation is pretty heavy
- We can’t run simulation on laptops

Wang, L., Kurihana, T., Meray, A., Mastilovic, I., Praveen, S., Xu, Z., ... & Wainwright, H. (2022). Multi-scale Digital Twin:
Developing a fast and physics-informed surrogate model for groundwater contamination with uncertain climate models. arXiv
preprint arXiv:2211.10884. 26



Deep Learning-based Emulator: Digital Twin

Parameters
from PDF

{P1, P;....PN}

{#1; dos-- AN}

J

Input:

Climate + Subsurface
Parameters

J

Deep Learning: Enhanced Fourier Neural Operator

Emulator
predictions

¢ =. emulate(p )

Output:
Plumes

27



Emulator-based Plume Prediction

1955

Contaminant Concentration

TRUTH PREDICTION

()} 1 2 3 4 3 ®

Tritium concentration (mol/L)

7 8 9
le-9
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Off-Line Climate Change Assessment

Plume Difference from

Recharge T Prediction 2E-6 (LOW)
(mol/L) (mol/L)
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Northing, m

Physics-informed Spatiotemporal Interpolation

In situ Sensor Data
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Easting, m .
Reactive Transport Model
Multiscale data integration s

using Bayesian hierarchical
model with Gaussian Process
Models, Wainwright et al. L

- Flow direction

(2017) - Plume source

Integrated map

Wainwright et al., 2019
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Pathway to Adaptation

. Understand regulations
Stepwise implementation: in situ sensor deployment
Reducing sampling frequencies is easier
Then reducing # variables and reducing # wells

. Emphasize additional safety assurance
Continuous monitoring - early warning, explaining anomalies
Guide monitoring strategies (e.g., climate change)

. Autonomous monitoring - Al-assisted monitoring
Anomaly detection - instrument failure, system changes
Realistic plume visualization
Digital twin = simulate what can happen in the future



Summary

o Motivation: Sustainable remediation

Net environmental impact: contaminant removal vs other side effects
Long-term institutional controls with passive remediation, monitored natural attestation

o ALTEMIS Project

Long-term monitoring with new sensor technologies

* Insitu real-time monitoring with low-cost low-maintenance sensors

* \Vulnerable concepts to guide key technology implementation strategies
PyLenM: Python for Long-term Environmental Monitoring

* ML framework from data exploration to mapping and well optimization
 Open-source python package for groundwater data analytics

Simulation Intelligence: Simulations x ML/A

 Emulators for evaluating climate change impact on residual contamination
* Physics-informed spatial interpolation (physics-informed monitoring)

Pathway to adaptation



Thank You!

Contact
Haruko Wainwright
HMWainw@MIT.EDU
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