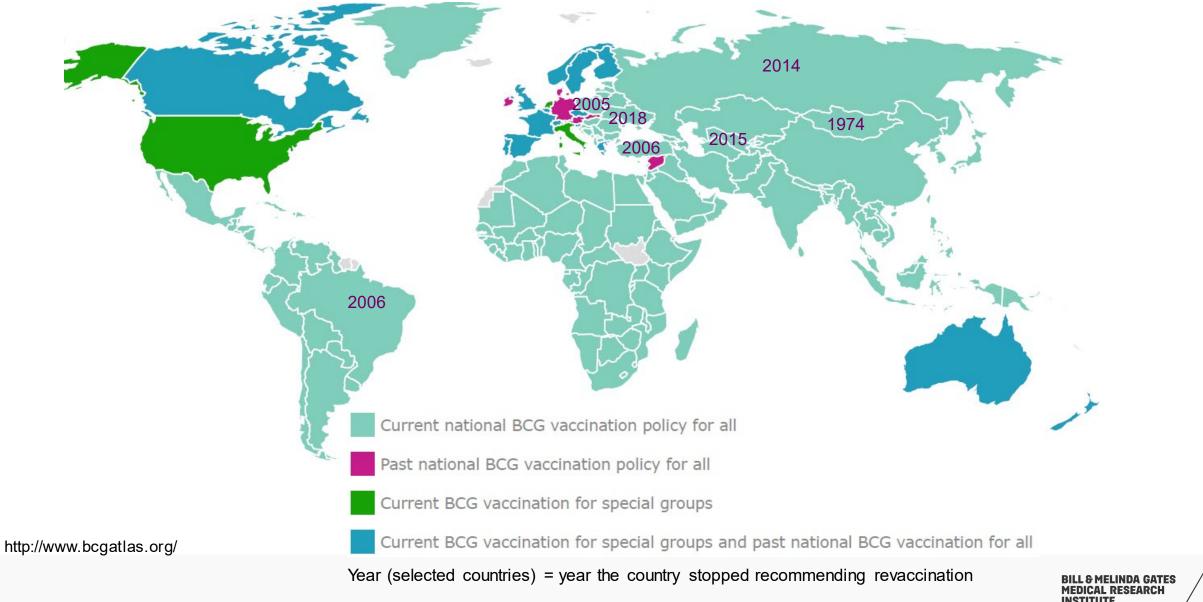
© 2019, Bill & Melinda Gates Medical Research Institute. All rights reserved.

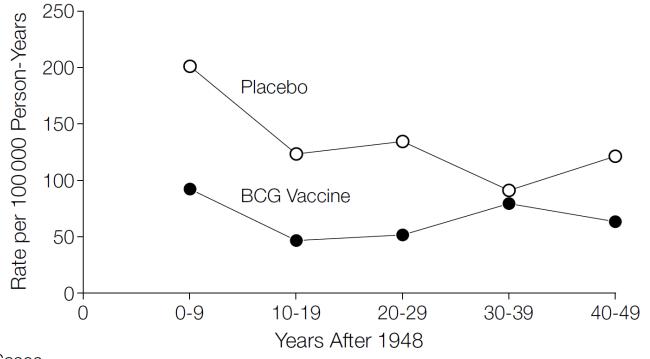

BILL& MELINDA GATES MEDICAL RESEARCH INSTITUTE

BCG Re-vaccination

Alexander Schmidt 09/15/2021

Innovations for Tackling Tuberculosis in the Time of COVID-19
The National Academies of Sciences, Engineering, and Medicine

100 Years of BCG: Vaccination Policies Around the Globe


Primary BCG Vaccination Protects Skin Test Negative Young Adults from TB

Ulleval Nurses Study, Oslo

TABLE IV	V.—Rates Ulle		Cuberci Jrses, i			AMONG
	Nos.	Obser- vation		culosis	Rate per observati Mor-	_
$\overrightarrow{\mathrm{BCG}}$		1,772 1,450 687	22 35 97	o 3 10	12·4 24·1 141·2 VE=83%	o 2·1 14·6

Primary BCG Vaccination Protects Skin-test Negative Children & Adolescents From TB

American Indian & Alaska Native Study

Age @ Vx	N
<5	846
5-9	1283
10-14	738
15-19	141

No. of Tuberculosis Cases	rears Arter 1940					
Placebo	25	14	14	8	5	
BCG Vaccine	13	6	6	8	3	
Vaccine Efficacy, %	54	62	62	12	48	

Overall incidence of TB:

1.38/1,000 person years (placebo group)

0.66/1,000 person years (BCG group)

Differences In BCG Strains, Geography, Incidence & Observed Vaccine Efficacy

LONG-TERM RESULTS OF BCG VACCINATION IN THE SOUTHERN UNITED STATES¹

G. W. COMSTOCK² AND C. E. PALMER

(Received for publication September 20, 1965)

INCIDENCE OF TUBERCULOSIS AMONG CONTROLS
AND VACCINEES

Study Category	Study Population	Number of Cases	Average Annual Incidence per 100,000
	Total		<u> </u>
Controls	17,854	32	12.8
Vaccinees	16,913	26	11.0

Percentage reduction in tuberculosis among vaccinees: 14.2

BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life

FOURTH REPORT TO THE MEDICAL RESEARCH COUNCIL BY ITS TUBERCULOSIS VACCINES CLINICAL TRIALS COMMITTEE *

		Cases of			
Trial group	Number of participants	Number starting within 15 years	Annual incidence per 1 000 participants b	Protective efficacy (%)	
Negative, unvaccinated	12 699	240	1.28		
Negative, BCG-vaccinated	13 598	56	0.28	78.4	
Positive to 3 TU	15 514	204	0.89		
Positive only to 100 TU	6 153	52	0.57		

Comstock & Palmer, 1966, DOI: <u>10.1164/arrd.1966.93.2.171</u>

MRC UK, 1972, PMID: 4537855

Karonga Prevention Trial, Malawi

Started 1986, >23,000 subjects in BCG revax group

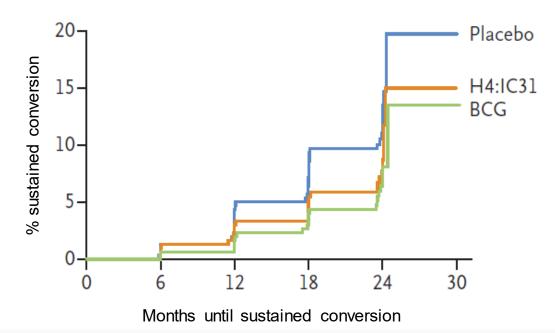
Randomised controlled trial of single BCG, repeated BCG, or combined BCG and killed *Mycobacterium leprae* vaccine for prevention of leprosy and tuberculosis in Malawi

Case criteria	n Scar-positive partic BCG (23 456) vs p				
		Incidence rate	Number of cases		
	ratio (95% CI)	BCG	Placebo		
Certain and probable tuberculosis	407	1.04 (0.73–1.48)	65	62	
Pulmonary tuberculosis	376	1.13 (0.78–1.63)	60	53	
Glandular tuberculosis	31	0.56 (0.19–1.66)	5	9	
Total certain tuberculosis*	225	1.43 (0.88–2.35)	39	27	
Total certain pulmonary tuberculosis*	201	1.74 (1.00–3.03)	35	20	

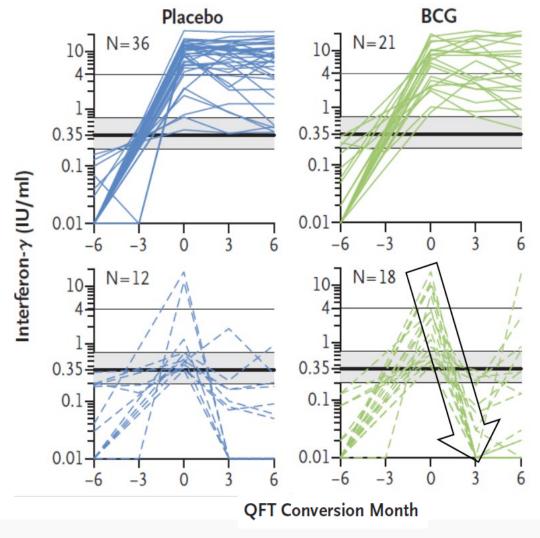
- No TST prior to BCG re-vaccination
- Enhanced passive follow-up
- No protection observed

BCG-REVAC Trial, Brazil

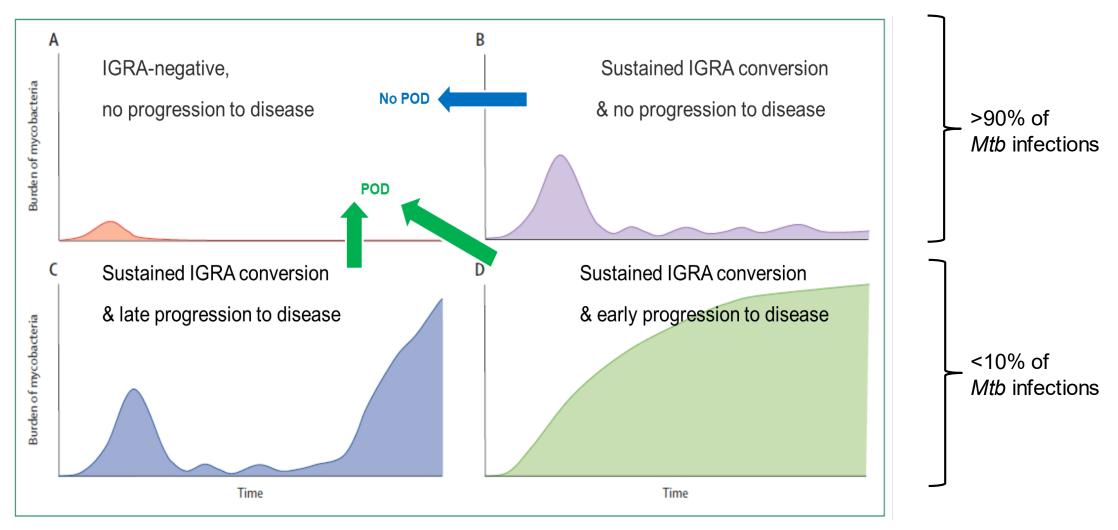
Started 1996, >115,000 children in BCG revax group


Evidence of an effect of BCG revaccination on incidence of tuberculosis in school-aged children in Brazil: Second report of the BCG-REVAC cluster-randomised trial

	VE	95% CI
Salvador 7-14 yoa	19%	3 to 33%
Salvador <11 yoa	33%	3 to 54%
Manaus 7-14 yoa	1%	-27 to 23%
Total	12%	-2 to 12%


- Cluster-randomized trial, BCG vs no intervention
- No TST prior to BCG re-vaccination
- One or no BCG scar for inclusion
- Passive follow-up
- No protection observed in the overall population
- Modest effect in younger children & further from equator,
- Effect of environmental mycobacteria?

Prevention of (sustained) Mtb infection with H4:IC31 or BCG Revaccination (Aeras C-040-404)


- N=990, IGRA-negative at enrollment, 1:1:1
- Primary endpoint: initial IGRA-conversion
 - / BCG: Vaccine efficacy (VE) not statistically significant
- Secondary endpoint: sustained IGRA-conversion
 - / initial conversion and IGRA+ 3 and 6 months post initial conversion
 - / BCG VE was 45% (95% CI 6.4-68%, p=0.03)

• IGRA conversion rate: 10% per 100 person years

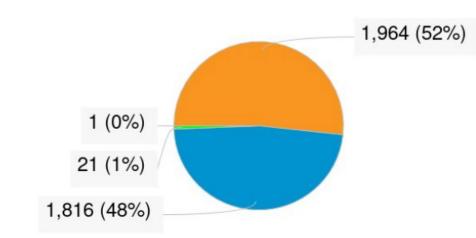
Is IGRA reversion indicative of *Mtb* clearance & does it lead to prevention of disease (POD)?

Seddon et al, 2019, DOI: 10.1016/S1473-3099(18)30787-4

GATES MRI BCG ReVax Trial

Goal: generate data that can potentially support policy change for BCG revaccination

Randomized (1:1), placebo controlled, Phase 2b trial in South Africa, using BCG vaccine from AJ Vaccines / Biovac Institute (Danish 1331)


- Approx.1,800 IGRA-negative participants 10-18 years of age
- IGRA every 6 months for 48 months, plus 2 post-conversion visits

Primary objective:

- Demonstrate the efficacy of BCG revaccination for the prevention of sustained Mtb infection (POSI)
 - / Event-triggered analysis once 118 cases are observed, time-to-event, p<0.025

Other objectives (selected):

- / Evaluate safety & reactogenicity
- / Evaluate durability of efficacy
- / Explore and/or develop candidate correlates of risk (CoRs) and correlates of protection (CoPs)

Clinicaltrials.gov NCT 04152161

BCG Immune Correlates for POSI (based on Aeras C-040-404 trial)

CELLULAR IMMUNITY

- Antigen-specific T cells and NK cells (McElrath)
 - Intracellular cytokine staining
- Donor-unrestricted T cells (DURTs, MAITs) (McElrath)
 - Tetramer staining
- scRNAseq (Shalek)

HUMORAL IMMUNITY

- Antibody titer, subclass and avidity (Tomaras)
 - Binding antibody multiplex assay
- Antibody function (Alter)
 - Systems serology
- Antibody-mediated Mtb growth inhibition (Alter)

INNATE / TRAINED IMMUNITY

- Whole blood composition (Nemes)
 - o DLC-ICE
- scATACseq (Barreiro)
- EpiToF (Utz/Khatri)

OMICS ANALYSES

Bulk RNAseq (Scriba)

CoP effort led by Nicole Frahm, Gates MRI

Correlates of Risk & Correlates of Protection

- 1. Describe CoRs & CoPs for sustained infection, based on Aeras/IAVI BCG Revax samples
 - 1. Then test candidate CoRs & CoPs using samples from MRI BCG ReVax
- 2. Describe CoRs & CoPs for TB, based on M72 Phase 2b samples
 - 1. Then test identified CoRs & CoPs for TB using M72 Phase 3 samples
- 3. Identify CoRs & CoPs that are shared between POSI and POD data sets

Will this be sufficient to convince policy makers?

Other potential data sources:

- Ongoing and planned Phase 3 programs, e.g., SII Phase 3 program for VPM1002 (rBCG)
- Real world evidence from (discontinuation of) BCG revaccination programs

Summary

- BCG revaccination is associated with a higher rate of IGRA reversion, possibly indicative of a protective immune response, and potentially leading to Mtb clearance
- It is unknown what percentage of BCG re-vaccinated individuals who reverted to IGRA-negative would have been at risk of progression to TB disease had they not reverted, i.e., a link between POSI and POD has not yet been established
- BCG revaccination could potentially contribute to accelerating the end of the epidemic (available & affordable) but a potential policy change will likely depend on linking POSI to POD
- The evidence generated from the BCG ReVax study has the potential to provide useful data for vaccine policy makers. The potential impact of geography, environmental mycobacteria, and differences in commercially-available vaccines will play a role in policy deliberations.
- Additional evidence may come from additional RCTs (e.g., rBCG Phase 3) or from real world data
- If robust CoRs & CoPs can be established for TB vaccines, the impact on vaccine development could be transformational (faster, less expensive, easier to iterate)

