Off-the-Shelf Engineered iPSC-derived NK and T Cells for the Treatment of Cancer
Forward-Looking Statements

This presentation contains “forward-looking statements” within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding the safety and therapeutic potential of the Company’s product candidates, the advancement of and plans and timelines related to the Company’s ongoing and planned clinical studies and the clinical investigation of its product candidates, the timing for the Company’s receipt of data from its clinical trials and preclinical studies, and the Company’s clinical development and regulatory strategy. These and any other forward-looking statements in this presentation are based on management’s current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that results observed in studies of its product candidates, including interim results and results from earlier studies, may not be predictive of final results or results observed in ongoing or future studies involving these product candidates, the risk of a delay in the initiation of, or in the enrollment or evaluation of subjects in, any clinical studies, and the risk that the Company may cease or delay manufacture, or preclinical or clinical development, of any of its product candidates for a variety of reasons (including regulatory requirements, difficulties in manufacturing or supplying the Company's product candidates, and any adverse events or other negative results that may be observed during preclinical or clinical development). These statements are also subject to other risks and uncertainties as further detailed in the Company’s most recently filed periodic report, and subsequent periodic reports filed by the Company, under the Securities Exchange Act of 1934, as amended, any of which could cause actual results to differ materially from those contained in or implied by the forward-looking statements in this presentation. The Company is providing the information in this presentation as of the date hereof and does not undertake any obligation to update any forward-looking statements contained in this presentation unless required by applicable law.
Changing the Game in Cell Therapy

Off-the-Shelf Cell Products to Eradicate Cancer

Multiplexed Engineering
Incorporate multiple mechanisms of action to eradicate cancer

Treatment Paradigm
Flexible out-patient treatment strategies to drive deep responses

Off-the-Shelf
Stable, cryopreserved for on-demand treatment and expanded patient reach

Uniform Products
Consistent identity, purity and potency of cell products

Mass Production
Reliable manufacturing process with high yield at low cost per dose
A Novel Starting Cell Source for Cell-based Immunotherapy

Renewable clonal starting material for the generation of homogenous cell products

Human Induced Pluripotent Stem Cells (iPSCs)

Transitioning from a heterogenous process to the cost-effective delivery of optimized cell products

Single-cell Derived iPSC Clone

- Unlimited Self-Renewal
- Precise Engineering
- Uniform in Composition
- Potential to Differentiate into 200+ Cell Types
- Master Cell Banks
- Extensive Characterization

Renewable Clonal Cell Line ---> Homogeneous Cell Products

Fate Therapeutics’ iPSC product platform is supported by an IP portfolio of 300+ issued patents and 150+ pending patent applications
iPSC Product Platform

Disruptive Approach Enabling Mass Production of Universal NK Cell and T-Cell Products

- Multiplex engineered
- Homogeneous product
- Mass production
- Off-the-shelf

Multiple tumor-fighting mechanisms
High quality; consistent purity and activity
High yield; low cost per dose
On-demand; expanded patient reach
Creating novel multiplexed engineered iNK and iT cells with multi-antigen specificity to combat tumor heterogeneity and treatment resistance

A Snapshot of our R&D Activities

Effector function
- CD16
- CAR
- HLA knock-down
- PD-L1
- CXCR3
- IL-15RF

Resistance
- dominant negative TGF-βR

Persistence

Homing

Specificity

Multi-Antigen and Combinational Targeting of Cancer

Address: Antigen Escape, Surface Antigen Variability, Intracellular Antigens “CAR + hnCD16 + TCR + CD3/CD28

Targeting Common Tumor Tricks

Address: Stress Antigen Shedding “MICA/B”

Address: Carcinogenesis and Metastasis Signaling “B7-H3”

Address: Immune Evasion “TBA”

✓ Therapeutic mAbs
✓ Checkpoint Blockade Therapy
✓ T and NK cell engagers
✓ Radiation Therapy
✓ Multiple Immune Cells

Modified after Saetersmoen et al. Seminars in Immunopathology 2019
Best-in-Class Off-the-Shelf CAR Product Candidates With Multi-Antigen Capacity

First wave of precisely engineered CAR-mediated effector cells derived from master iPSC lines
FT596: hnCD16 + CAR19 + IL15-RF iPSC-derived NK Cell Product Candidate

Novel Dual-antigen Targeting Strategy to Overcome Tumor Heterogeneity and Antigen Escape for a Durable Response in B cell Malignancies

High-affinity Non-cleavable CD16 to Maximize ADCC

hnCD16 + 158VV High-affinity Non-cleavable mAb

Engineered IL-15 Receptor Fusion for Cytokine Support

IL-15RF Designed to promote survival, proliferation and anti-tumor activity

Engineered to be complete, consisting of both IL15 and IL15 receptor for maximum activity

CAR Optimized for NK Cell Biology

CD19-CAR anti-CD19 scFV

NK-tailored signalling tail

engineered to be complete, consisting of both IL15 and IL15 receptor for maximum activity

Stem Cell Reports 2014; Plos One 2016; Cell Stem Cell 2018; Blood 2020; Science Translational Medicine 2021; Cell Stem Cell 2021
FT596: hnCD16 + CAR19 + IL15-RF iPSC-derived NK Cell Product Candidate

Novel Dual-antigen Targeting Strategy to Overcome Tumor Heterogeneity and Antigen Escape

Clonal iPSC MCB → Mass production of uniformly-engineered, well-characterized, cryopreserved, off-the-shelf drug product enabling on-demand treatment and broad patient accessibility

The manufacturing process is robust – over 1 trillion iPSC-derived NK cells can be produced from a single vial of banked starting material which can be further increased with implementation of larger-scale processes.

Durable CAR-mediated Cytotoxicity

Leukemia xenograft NSG immunodeficient mouse model
FT596-101: B-Cell Lymphoma as Monotherapy and in Combination with Rituximab

Phase 1 Study Design – Single-Dose, Single-Cycle Treatment

- **Regimen A** – Monotherapy
 - Relapsed / refractory B-cell lymphoma
 - Eligibility allows for prior CD19-targeted CAR T-cell therapy
 - Single-dose, single-cycle dose escalation: 30M, 90M, 300M, 900M cells per dose ± mAb
 - **No mandatory hospitalization**: may be administered in outpatient setting

- **Regimen B1** – Rituximab Combination

Cyclophosphamide: 500 mg/m² IV x 3 days
Fludarabine: 30 mg/m² IV x 3 days
Rituximab: 1 dose at 375 mg/m² IV per cycle

Diagram Details:
- **± Rituximab**: Indicates the option of using rituximab in combination with the treatment regimen.
- **CY/FLU**: Denotes cyclophosphamide and fludarabine doses.
- **FT596**: Represents the administration of FT596.
- **DLT Assessment**: Indicates the day of dose-limiting toxicity assessment.
- **Optional Cycle 2 with FDA consent**: Indicates the possibility of an additional treatment cycle with FDA approval.
- **Post-Treatment Follow-Up**: Specifies the period for follow-up after treatment.

- **Cycle 1**
 - Days: -5, -4, -3, 1, 29
 - Disease Response

- **Post-Treatment**

Note: The diagram illustrates the study design for the administration of FT596 in monotherapy and in combination with rituximab, highlighting the key phases and dosing regimens for the phase 1 study.
FT596-101: Interim Phase 1 Data
1-Dose, 1-Cycle Response Rates Inclusive of Prior Auto CAR19 T-cell Therapy

FT596 Interim Phase 1 Data – 1 dose x 1 cycle

<table>
<thead>
<tr>
<th>Cycle 1, Day 29 Response</th>
<th>n=10 (mono)</th>
<th>n=10 (combo)</th>
<th>n=20 (total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCD I – 1 x 30M</td>
<td>1/3 (33%)</td>
<td>0 CR</td>
<td>0 CR</td>
</tr>
<tr>
<td>TCD II – 1 x 90M</td>
<td>3/4 (75%)</td>
<td>2 CR</td>
<td>2 CR</td>
</tr>
<tr>
<td>TCD III – 1 x 300M</td>
<td>3/3 (100%)</td>
<td>1 CR</td>
<td>2 CR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>≥ 90M FT596 Cells</th>
<th>n=7 (mono)</th>
<th>n=7 (combo)</th>
<th>n=14 (total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR – CD19 CAR T Naïve</td>
<td>6/6 (100%)</td>
<td>3 CR</td>
<td>2 CR</td>
</tr>
<tr>
<td>OR – Prior CD19 CAR T</td>
<td>0/1 (0%)</td>
<td>0 CR</td>
<td>2 CR</td>
</tr>
<tr>
<td>Total</td>
<td>6/7 (86%)</td>
<td>3 CR</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Dose-dependent responses with 10 of 14 patients achieving OR (71%), with 7 achieving CR (50%), following single-dose, single-cycle treatment schedule with ≥ 90M FT596 cells

≥ 90M FT596 Cells: n=7 (mono) OR – CD19 CAR T Naïve: 6/6 (100%) CR: 3/6 (50%) OR – Prior CD19 CAR T: 0/1 (0%) CR: 2/3 (67%) Total: 6/7 (86%) CR: 3/7 (43%)

aCAR19 = autologous CD19-targeted CAR T-cell therapy; CR = complete response; M = million; OR = objective response; TCD = total cell dose
Interim FT596 Phase 1 results are as of June 25, 2021 data cutoff date. Response assessment for 3 patients was entered into database subsequent to data cutoff.
Interim FT596 Phase 1 results are inclusive of patients having received prior CD19-targeted CAR T-cell therapy
Day 29 protocol-defined response assessment per Lugano Classification
Summary: Prospects for Off-the-Shelf Multi-Antigen Targeting Cellular Therapy

Off-the-Shelf
(Engineered) Single Pluripotent Stem Cell
- Renewable
- Potential to differentiate into 200+ cell types

Expansion & Banking
- Master Cell Bank
 - Working Cell Banks

Differentiation & Expansion
- T Cell
- Off-the-Shelf Homogeneous | Multi-Dosing (Engineered) Cell Products
- NK Cell

Unlimited Supply of Clonal Master iPSC Lines

Thousands of Clonally-derived Doses of Cell Products

Novel Targeting Strategies
- FT596 [CAR-19]
- FT576 [CAR-BCMA]
- FT536 [CAR-MICA/B]

“to eliminate cancer”

“to reach more patients in need”
Acknowledgements

Key Collaborators & Collaboration Sites

Memorial Sloan Kettering Cancer Center

University of Minnesota

Oslo University Hospital

Dana-Farber Cancer Institute

Baylor College of Medicine

Key Scientific Founders

Armin Rehm, MD PhD
Kai Wucherpfennig, MD PhD
Max Mamonkin, PhD

The Fantastic People of Fate Therapeutics

*** R&D @ Fate ***

Michel Sadelain, MD, PhD
Isabelle Rivière, PhD
Jeffrey S. Miller, MD
Bruce Walcheck, PhD
Kalle Malmberg, MD PhD
Armin Rehm, MD PhD
Kai Wucherpfennig, MD PhD
Max Mamonkin, PhD
Rudolf Jaenisch MD
Sheng Ding PhD
Leonard Zon MD
David Scadden MD

Patients, Families and Treatment Sites