

Assessing Coronavirus threats

Peter Daszak EcoHealth Alliance, New York, USA *www.ecohealthalliance.org*

Local conservation. Global health.

Human and Civet SARS-CoV nestle phylogenetically within Bat SL-CoV cluster

Ge et al. (2013) Nature

New isolate from bats (2015), even closer to SARS-CoV

	Bat SL-CoV WIV16	Human SARS CoV Tor2	Human SARS CoV BJ01	Human SARS CoV GZ02	Civet SARS CoV SZ3	Bat SL-CoV WIV1
Bat SL-CoV WIV16		96	97	97	97	93
Human SARS CoV Tor2	96		99	99	98	92
Civet SARS CoV SZ3	97	98	98	99		92
Bat SL-CoV WIV1	93	92	92	92	92	

Spike protein gene homology, Bat SARS-Like CoVs vs. Human, Civet SARS-CoV

Memish et al. 2013 EID

Ecological Niche Models to identify MERS "EpiZone"

 Modeled distribution of MERS-CoV bats

• Camel production (FAO)

 Modeled risk of MERS spillover (horn of Africa)

New Coronaviruses from bats in Mexico

Anthony et. al. 2013 J. Gen Virol.

A Strategy To Estimate Unknown Viral Diversity in Mammals

Simon J. Anthony,^{a,b} Jonathan H. Epstein,^b Kris A. Murray,^b Isamara Navarrete-Macias,^a Carlos M. Zambrana-Torrelio,^b Alexander Solovyov,^a Rafael Ojeda-Flores,^c Nicole C. Arrigo,^a Ariful Islam,^b Shahneaz Ali Khan,^d Parviez Hosseini,^b Tiffany L. Bogich,^{e,f} Kevin J. Olival,^b Maria D. Sanchez-Leon,^{a,b} William B. Karesh,^b Tracey Goldstein,^g Stephen P. Luby,^h Stephen S. Morse,^{g,I} Jonna A. K. Mazet,^g Peter Daszak,^b W. Ian Lipkin^a

Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA^a; EcoHealth Alliance, New York, New York, USA^b; Facultad de Medicina Veterinaria and Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Distrito Federal, Mexico^c; Chittagong

- ~58 unknown viruses in *Pteropus giganteus*
- ~320,000 unknown viruses in all mammals; ~72,152 in the 1,244 known bat species
- One-off cost to identify 100% = \$6.8 Billion
- One-off cost to identify 85% = \$1.4 Billion
- Cost of SARS = \$10-50 Billion
- ~250 bat viruses in last 5 years, 530 total = 7% of the estimated #

Anthony et al. *mBio* 2013

Global emerging disease 'hotspots'

Jones et al. Nature 2008

Follow up Genetic and Experimental studies (post-PREDICT) to Further Assess Spillover Potential

Virus isolation

- Sequence whole genome
- With temporally sampled viruses, measure mutation rates and phylodynamics
- Sequence receptor binding domain, if known
- Structural comparison with human receptors (e.g. 3D models, *In silica*)
- Cell line infection experiments (in vitro)
- Humanized mice and other animal experiments

Ranking risk for zoonotic potential of novel viruses

VIRUS-SPECIFIC TRAITS _ **RISK OF SPILLOVER** VIRUS-INDEPENDENT TRAITS **GEOGRAPHIC** HOST **HOTSPOTS FOR BREADTH/PLASTICITY EMERGENCE** PROPORTION **HOST SPECIES TRAITS, KNOWN ZOONOSES GEOGRAPHIC RANGE**, **IN VIRUS FAMILY** RELATEDNESS Anterial of a second of a seco HOST ABUNDANCE **PHYLOGENETIC RELATEDNESS TO** Sunda Sunda Sunda Sunda Sunda Sunda Sunda Sunda Sunda **KNOWN ZOONOSES** VIRAL PREVALENCE % pos

EPIDEMIOLOGICAL/ **CONTACT INTERFACE**

IN HOST

OTHER VIRUS-SPECIFIC TRAITS

MODEL/FACTOR	Increased Risk	Decreased Risk	Data Used/Needed
1. Hotspots v2	Hotspot	Coldspot	EHA - Human pop density, mammal diversity, environmental drivers, landuse
2. Geographic viral range	More sites (=large viral spatial range)	Few sites	GAINS – lat/long HP3 -sum of host ranges
3. Interfaces	High risk interface	Low risk activity	GAINS data and (CKJ's lit review model)
4. Viral prev. in host	High	Low	GAINS test data, need denominator
5. Host abundance	High	Low	GAINS surveillance data; need effort
6a. Host Taxa	Rodents, bats, primates	Other mammals	HP3 and CKJ - Use if only have Order or Family level info.
6b. Host Species Traits and Phylog	High predicted number shared	Low predicted viruses shared	HP3 - Use if host Species or Genus info. Categorize continuous model output
7. Viral Family –Host Phylog Breadth	Large breadth and decent dataset	Small breadth	HP3 -Mean/median host phylogeneticrange per viral family or genus.GAINS data on hosts if new virus.
8. Viral Family – % zoonotic	>50% of viruses known to be human	<50%	HP3 - Based on known zoonoses/viral diversity for each viral family. Factor in # viruses too, not just %.
9. Nearest Neighbor	Validity? See Kitchen et al. 2011, PNAS	Cutoff values?	GAINS - viral seq data; and other published seqs from Genbank. Robust phylogeny needed
10. Cophylogeny	Disrupted cophy	Concordant cophy	GAINS and Genbank- need host and viral seq data. Categorize # events/virus.

Conservation Medicine • Human Health • Ecosystem Sustainability

ISSN 1612-9202 (Print) ISSN 1612-9210 (Electronic) 10393 • 6(4) 000-000 (2009)

Collaborators

- UC Davis, Metabiota, WCS, Smithsonian
- Univ. Wyoming (David Finnoff)
- Columbia Univ. (Ian Lipkin, Simon Anthony)
- 100+ partners in 24 countries
- Wuhan Institute of Virology, Yunnan CDC
- Universiti Malaysia Sabah, Sabah Wildlife Dept.

Funders

