OUTLINE

- Background on Fast Reactor Technology
 - Physics and Motivations
 - International Demonstration Reactors

- SFR Fuels and Safety
 - Fuel Options and Key Characteristics
 - Typical System Configuration and Operating Conditions
 - Safety Implications and Inherent Safety Approach

- SFR “Economics”
 - Reactor Demonstration Stages
 - Cost Reduction Design Features
 - Modern SFR Design Approach
In LWRs, most fissions occur in the 0.1 eV thermal “peak”

In SFRs, moderation is avoided – no thermal neutrons
IMPACT OF NEUTRON ENERGY SPECTRUM

- Fissile isotopes are likely to fission in both thermal/fast spectrum
 - Fission fraction is higher in fast spectrum
- Significant (up to 50%) fission of fertile isotopes in fast spectrum

Net result is more excess neutrons and less higher actinide generation in SFR
EVOLVING VISION FOR FAST REACTORS

From the initial conception of nuclear energy, it was recognized that full realization of uranium energy content would require fast reactors.

Fermi: The vision to close the fuel cycle

50’s: First electricity generating reactor: EBR-I with a vision to close the fuel cycle for resource extension

60-70’s: Expected Uranium scarcity – international fast reactor programs

80’s: Decline of nuclear – Uranium plentiful

USA (& others): once through cycle & repository

France, Japan (& others): closed cycles to mitigate and delay waste disposal

Late 90’s in the U.S.: Rebirth of fast reactor research and development for improved waste management

Now: flexible actinide management for fuel cycle benefits
GENERATION-IV NUCLEAR SYSTEMS

- Six Generation IV Systems considered internationally
- Often target missions beyond electricity
 - High temperature energy products
 - Fuel cycle benefits

<table>
<thead>
<tr>
<th>System</th>
<th>Neutron Spectrum</th>
<th>Coolant</th>
<th>Outlet Coolant Temperature °C</th>
<th>Size (MWe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHTR (Very high temperature reactor)</td>
<td>thermal</td>
<td>helium</td>
<td>900-1,000</td>
<td>250-300</td>
</tr>
<tr>
<td>SFR (Sodium-cooled fast reactor)</td>
<td>fast</td>
<td>sodium</td>
<td>550</td>
<td>30-2,000</td>
</tr>
<tr>
<td>SCWR (Supercritical water-cooled reactor)</td>
<td>thermal/fast</td>
<td>water</td>
<td>510-625</td>
<td>300-1,500</td>
</tr>
<tr>
<td>GFR (Gas-cooled fast reactor)</td>
<td>fast</td>
<td>helium</td>
<td>850</td>
<td>1200</td>
</tr>
<tr>
<td>LFR (Lead-cooled fast reactor)</td>
<td>fast</td>
<td>lead or lead alloy</td>
<td>480-800</td>
<td>20-1,000</td>
</tr>
<tr>
<td>MSR (Molten salt reactor)</td>
<td>epithermal/fast</td>
<td>fluoride salts</td>
<td>700-800</td>
<td>1,000</td>
</tr>
</tbody>
</table>
U.S. FAST REACTOR INDUSTRY TODAY

Primary interface with DOE is industry Fast Reactor Working Group (FRWG)

- Started in 2017 to provide developers with access to technical and regulatory resources, continues under NEI leadership

The FRWG Members represent a diverse set of advanced fast reactor technologies:

<table>
<thead>
<tr>
<th>Sodium-Cooled</th>
<th>Lead-Cooled</th>
<th>Gas-Cooled</th>
<th>Molten Salt-Cooled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oklo</td>
<td>Westinghouse</td>
<td>General Atomics</td>
<td>Elysium</td>
</tr>
<tr>
<td>General Electric</td>
<td>Columbia Basin Consulting Group</td>
<td></td>
<td>Southern/TerraPower</td>
</tr>
<tr>
<td>TerraPower</td>
<td>Hydromine</td>
<td></td>
<td>Flibe Energy</td>
</tr>
<tr>
<td>Advanced Reactor Concepts</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Electric Utilities - Duke, Exelon, Southern, StudsvikScandpower, EPRI, NEI

The FRWG provides input to DOE on technology development priorities

- Work directly with Lab experts on international engagement and other projects
- Provide consensus feedback to Workshops, Forums, and other advanced reactor groups
FAST REACTOR EXPERIENCE

U.S. Experience

- First usable nuclear electricity was generated by a fast reactor – the EBR-I in 1951
- EBR-II (20 MWe) was operated at Idaho site from 1963 to 1994
- FERMI-1 commercial power reactor (61 MWe) in 1965
- Fast Flux Test Facility (400 MWt) operated from 1980 to 1992

Worldwide Experience

- About 20 fast reactors with >400 operating-years
- Test and/or demonstration reactors built and operated in US, France, UK, Russia, Japan, India, and China
- New power reactors: BN-800 (880 MWe) – 2014, PFBR (500 MWe) - TBD
- Active demonstration projects: CFR600 (China), Natrium (USA)

Viability of sodium-cooled fast reactor technology is demonstrated
REACTOR DEVELOPMENT STEPS: US AND INTERNATIONAL EXPERIENCE FOR LWRS AND ADVANCED REACTOR SYSTEMS

- **Research and Development**
 - Prove scientific feasibility associated with fuel, coolant and geometrical configuration

- **Engineering Demonstration**
 - Reduced scale
 - Proof of concept
 - Concepts that have NEVER been built
 - Viability of integrated system

- **Performance Demonstration**
 - Establish that scaleup of system works
 - Gain operating experience to validate integral behavior of the system
 - Proof of performance

- **Commercial Demonstration**
 - Full scale to be replicated for subsequent commercial offerings if system works as designed
INTERNATIONAL FAST REACTORS

<table>
<thead>
<tr>
<th>Reactor</th>
<th>Country</th>
<th>MWth</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBR 1</td>
<td>USA</td>
<td>1.4</td>
<td>1951-63</td>
</tr>
<tr>
<td>DFR</td>
<td>UK</td>
<td>60</td>
<td>1959-77</td>
</tr>
<tr>
<td>BR-10</td>
<td>Russia</td>
<td>8</td>
<td>1959-71, 1973-2002</td>
</tr>
<tr>
<td>EBR II</td>
<td>USA</td>
<td>62.5</td>
<td>1963-94</td>
</tr>
<tr>
<td>Fermi 1</td>
<td>USA</td>
<td>200</td>
<td>1963-72</td>
</tr>
<tr>
<td>Rapsodie</td>
<td>France</td>
<td>40</td>
<td>1966-82</td>
</tr>
<tr>
<td>BOR-60</td>
<td>Russia</td>
<td>50</td>
<td>1968-</td>
</tr>
<tr>
<td>BN 350*</td>
<td>Kazakhstan</td>
<td>750</td>
<td>1972-99</td>
</tr>
<tr>
<td>Phenix</td>
<td>France</td>
<td>563</td>
<td>1973-2009</td>
</tr>
<tr>
<td>PFR</td>
<td>UK</td>
<td>650</td>
<td>1974-94</td>
</tr>
<tr>
<td>KNK 2</td>
<td>Germany</td>
<td>58</td>
<td>1977-91</td>
</tr>
<tr>
<td>Joyo</td>
<td>Japan</td>
<td>140</td>
<td>1978-</td>
</tr>
<tr>
<td>FFTF</td>
<td>USA</td>
<td>400</td>
<td>1980-93</td>
</tr>
<tr>
<td>BN 600</td>
<td>Russia</td>
<td>1470</td>
<td>1980-</td>
</tr>
<tr>
<td>Superphenix</td>
<td>France</td>
<td>3000</td>
<td>1985-98</td>
</tr>
<tr>
<td>FBTR</td>
<td>India</td>
<td>40</td>
<td>1985-</td>
</tr>
<tr>
<td>Monju</td>
<td>Japan</td>
<td>714</td>
<td>1994-96, 2010-15</td>
</tr>
<tr>
<td>CEFR</td>
<td>China</td>
<td>65</td>
<td>2010-</td>
</tr>
<tr>
<td>PFBR</td>
<td>India</td>
<td>1250</td>
<td>2021?</td>
</tr>
<tr>
<td>BN-800</td>
<td>Russia</td>
<td>2000</td>
<td>2014-</td>
</tr>
<tr>
<td>CFR600</td>
<td>China</td>
<td>1500</td>
<td>2023</td>
</tr>
<tr>
<td>MBIR</td>
<td>Russia</td>
<td>150</td>
<td>2028</td>
</tr>
<tr>
<td>Natrium</td>
<td>USA</td>
<td>840</td>
<td>2027</td>
</tr>
</tbody>
</table>
FAST POWER REACTORS – MIXED EXPERIENCE

- FERMI-1 was built in early 1960s, only 61 Mwe
 - Flow blockage with local fuel melting in 1966, restarted in 1970
 - Stopped in 1972 due to fuel supply

- Russian BN-600 (600 MWe) started operation in 1980
 - Excellent operating record ~75% capacity factor for 40 years
 - Life extension to 2025 (45 years) with 2040 (60 years) application

- French SUPERPHENIX (1242 MWe) started operation in 1986
 - Limited power in startup phase, secondary loop problems
 - Shutdown in 1998, for political reasons

- Japanese MONJU (280 MWe) started operation in 1995
 - Secondary sodium leak in December 1995
 - Restarted in 2010; fuel handling incident in August 2010
 - Official shutdown in 2016, avoiding post-Fukushima upgrade costs
NEW SFR DEMONSTRATION REACTORS

- New power reactors recently built - BN-800 (880 MWe) in Russia
 - First criticality in June 2014
 - Connection to electrical grid in December 2015
 - Commissioned as power unit in October 2016
 - 82% capacity factor for operations in 2020

- PFBR (500 MWe) in India
 - All construction activities completed
 - Should start operations in late 2021/2022

- Other active fast reactor demonstration projects
 - CFR600 in China under construction
 - Natrium in US siting and licensing
SFR FUELS AND SAFETY
EARLY FAST REACTORS AND FUEL FORMS

Original choice was high density metal fuel (for breeding)

- First usable nuclear electricity—EBR-I in 1951
- EBR-II (1963), Fermi (1963), DFR (UK, 1959) all used metal fuel
- Early designs experienced severely limited fuel burnup because of fuel swelling (U-10Mo burnup of 3 GWD/MT for Fermi)

U.S. and international programs switched to oxide fuel in the late 1960s

- Low swelling and successful Navy oxide fuel experience → high burnup
- Fast Flux Test Facility (400 MWt) operated with oxide from 1980 to 1992

EBR-II (20 MWe) continued metal alloy fuel development from 1963 to 1994

- Solved burnup limitation by allowing adequate space for fuel swelling
- Demonstrated peak burnup comparable to oxide fuel (200 GWD/MT)
Fast Reactor Fuel Options

Fast Reactor Fuel Type

Fresh Fuel Properties

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Metal U-20Pu-10Zr</th>
<th>Oxide UO₂-20PuO₂</th>
<th>Nitride UN-20PuN</th>
<th>Carbide UC-20PuC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy Metal Density, g/cm³</td>
<td>14.1</td>
<td>9.3</td>
<td>13.1</td>
<td>12.4</td>
</tr>
<tr>
<td>Melting Temperature, °K</td>
<td>1350</td>
<td>3000</td>
<td>3035*</td>
<td>2575</td>
</tr>
<tr>
<td>Thermal Conductivity, W/cm°K</td>
<td>0.16</td>
<td>0.023</td>
<td>0.26</td>
<td>0.20</td>
</tr>
<tr>
<td>Operating Centerline Temperature at 40 kW/m, °K, and (T/T_melt)</td>
<td>1060 (0.8)</td>
<td>2360 (0.8)</td>
<td>1000 (0.3)</td>
<td>1030 (0.4)</td>
</tr>
<tr>
<td>Fuel-Cladding Solidus, °K</td>
<td>1000</td>
<td>1675</td>
<td>1400</td>
<td>1390</td>
</tr>
<tr>
<td>Thermal Expansion, 1/°K</td>
<td>17E-6</td>
<td>12E-6</td>
<td>10E-6</td>
<td>12E-6</td>
</tr>
<tr>
<td>Heat Capacity, J/g°K</td>
<td>0.17</td>
<td>0.34</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Reactor Experience, Country</td>
<td>US, UK</td>
<td>RUS, FR, JAP US, UK</td>
<td>IND</td>
<td></td>
</tr>
</tbody>
</table>
DESIGN ISSUES VARY FOR DIFFERENT FUEL OPTIONS

- **Fuel Swelling**
 - Fission product retention in carbide and nitride fuels can lead to greater swelling than observed for oxide fuels and exacerbate FCMI
 - Current metal and oxide fuel pin designs accommodate fuel swelling

- **Fuel / Cladding Chemical Interaction**
 - Metal uranium and plutonium forms low-melting point eutectic with iron
 - May limit coolant outlet temperature of metal fuel core, e.g., 510°C for metal as compared to ~550°C for oxide (structural materials limiting)

- **Fuel / Cladding Mechanical Interaction (FCMI)**
 - Hard, strong fuel forms push on cladding, particularly at high burnup
 - Worst for nitride and carbide, limits maximum burnup for ceramic fuels

- **Fuel / Coolant Compatibility**
 - Oxide fuel chemically reacts with the sodium coolant
 - Stricter limits on fuel pin failures to prevent potential flow blockages
 - See picture on failed cladding tests
RUN BEYOND CLADDING BREACH TESTS

9% burnup Oxide RBCB Test

12% Burnup Metal RBCB Test
(Operated 169 days after breach)
SAFETY IN DESIGN

- Like LWRs, SFR safety is first based on utilization of multiple (redundant and diverse) engineered protection systems:
 - independent scram systems with provision for stuck rods,
 - multiple coolant pumps, heat transport loops,
 - dedicated decay heat removal systems,
 - multiple barriers to release of radioactive materials.

- Inherent reactivity feedback mechanisms provide additional measures to protect the reactor during double-fault events:
 - Doppler effect,
 - reactivity feedback due to fuel axial and core radial expansion,
 - feedback due to changes in coolant density and void worth,
 - control-rod driveline expansion.

- For some designs, passive reactivity insertion devices (i.e., GEMs), and/or self-actuated shutdown systems are also considered.

- Intermediate loop and pool configuration utilized to assure primary coolant inventory; sodium leak or secondary water reactions monitored closely.
TYPICAL SPECIFICATIONS OF LWR AND SFR

<table>
<thead>
<tr>
<th></th>
<th>PWR</th>
<th>SFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific power (kWt/kg-fissile)</td>
<td>786</td>
<td>556</td>
</tr>
<tr>
<td>Power density (MWt/m³)</td>
<td>102</td>
<td>300</td>
</tr>
<tr>
<td>Fuel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rod outer diameter (mm)</td>
<td>9.5</td>
<td>7.9</td>
</tr>
<tr>
<td>Clad thickness (mm)</td>
<td>0.57</td>
<td>0.36</td>
</tr>
<tr>
<td>Rod pitch-to-diameter ratio</td>
<td>1.33</td>
<td>1.15</td>
</tr>
<tr>
<td>Enrichment (% fissile)</td>
<td>~4.0</td>
<td>~20</td>
</tr>
<tr>
<td>Average burnup (MWd/kg)</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coolant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure (MPa)</td>
<td>15.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Inlet temp. (°C)</td>
<td>293</td>
<td>332</td>
</tr>
<tr>
<td>Outlet temp. (°C)</td>
<td>329</td>
<td>499</td>
</tr>
<tr>
<td>Reactor Δp (MPa)</td>
<td>0.345</td>
<td>0.827</td>
</tr>
<tr>
<td>Rod surface heat flux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average (MW/m²)</td>
<td>0.584</td>
<td>1.1</td>
</tr>
<tr>
<td>Maximum MW/m²</td>
<td>1.46</td>
<td>1.8</td>
</tr>
<tr>
<td>Average linear heat rate (kW/m)</td>
<td>17.5</td>
<td>27.1</td>
</tr>
<tr>
<td>Steam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure (MPa)</td>
<td>7.58</td>
<td>15.2</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>296</td>
<td>455</td>
</tr>
</tbody>
</table>
TYPICAL THERMAL OPERATING CONDITIONS

- Sodium cooled fast reactors operate at near atmospheric pressure; peak pressures are set by core pressure drop and gravity head characteristics (up to about 1.0 MPa max at reactor inlet)
- Reactor coolant outlet temperatures are 510°C to 550°C, depending on cladding material (margin to boiling 330°C to 370°C)
- At reactor temperatures, sodium wets stainless steel, which is typically used as the cladding and structural material
- Average power densities in the reactor core are 300 to 500 kW/liter
- Typical coolant velocities in the fuel pin bundle are 5 to 7 m/s
- Fuel pins are tightly packed, typically arranged in a nearly touching triangular pitch, and positioned by a spiral wire spacer within a hexagonal assembly duct
- Average fuel pin linear power ratings are typically 23 to 28 kW/m for pins with cladding diameters of 6 to 8 mm
SAFETY IMPLICATIONS OF SFR DESIGN APPROACH

- Heat transfer properties of liquid metals allow:
 - Operation at high power density and high fuel volume fraction
 - Low pressure operation with significant margin to boiling
 - Enhanced natural circulation for heat removal

- High leakage fraction implies that the fast reactor reactivity is sensitive to minor geometric changes
 - As temperature increases and materials expand, a net negative reactivity feedback is inherently introduced

- Inherent safety design principles:
 - Tailored reactivity feedbacks to prevent core damage (page 22)
 - Multiple paths for passive decay heat removal envisioned (page 23)

- Favorable inherent feedback to prevent fuel damage has been demonstrated in United States sodium-cooled fast reactors (SFR)
 - EBR-II and FFTF tests for double fault severe transients
FAST REACTOR FEEDBACK EFFECTS

- Sensitivity to geometric changes introduces many feedback effects
 - Doppler
 - Coolant density
 - Core radial expansion
 - Core axial expansion
 - Grid-plate expansion
 - Control-rod driveline expansion
 - Vessel expansion

- System is designed to assure net negative temperature coefficient
DECAY HEAT REMOVAL SYSTEM OPTIONS

- Standard path is through primary/secondary loops
- Passive backup decay heat removal systems
 - natural circulation
 - either continuous operations or passive activation mechanism
- Most designs include multiple DHR systems
 - redundant
 - diverse

RVACS--Reactor Vessel Auxiliary Cooling System
VCCS--Vessel Cavity Cooling System
DRACS--Direct Reactor Auxiliary Cooling System
PRACS--Primary Reactor Auxiliary Cooling System
IRACS--Intermediate Reactor Auxiliary Cooling System
SGACS--Steam Generator Auxiliary Cooling System
SFR ECONOMICS
REACTOR DEVELOPMENT STEPS: US AND INTERNATIONAL EXPERIENCE FOR LWRS AND ADVANCED REACTOR SYSTEMS

Research and Development
- Prove scientific feasibility associated with fuel, coolant and geometrical configuration
- Reduced scale
- Proof of concept
- Concepts that have NEVER been built
- Viability of integrated system

Engineering Demonstration
- Establish that scaleup of system works
- Gain operating experience to validate integral behavior of the system
- Proof of performance

Performance Demonstration
- Full scale to be replicated for subsequent commercial offerings if system works as designed

Commercial Demonstration

From DOE Advanced Demonstration and Test Reactors Study, INL/EXT-16-37867 (January 2017)
DEPLOYMENT EXAMPLES

<table>
<thead>
<tr>
<th>Step in Deployment Path</th>
<th>Light Water Reactor (example)</th>
<th>Sodium Fast Reactor</th>
<th>High Temperature Gas-cooled Reactor</th>
<th>Lead Fast Reactor</th>
<th>Molten Salt Reactor</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D for scientific feasibility</td>
<td>SPERT, BORAX, PBF</td>
<td>SEFOR (20 MWe), TREAT</td>
<td>CABRI</td>
<td>US International</td>
<td>US International</td>
</tr>
<tr>
<td>Engineering Demonstration</td>
<td>S1W EBWR</td>
<td>EBR-I (1.4 MWe), EBR-II (20 MWe)</td>
<td>Dounreay (14 MWe), Rhapsodie (40 MWe), Peach Bottom (40 MWe)</td>
<td>DRAGON (20 MWe), HTR-10 (10 MWe), HTTR (30 MWe), AVR (15 MWe)</td>
<td>Soviet submarines (^a)</td>
</tr>
<tr>
<td>Performance Demonstration</td>
<td>USS Nautilus, Shippingport</td>
<td>Fermi-1 (69 MWe); FFTF (400 MWe)</td>
<td>Phenix (233 MWe), Monju (300 MWe), BN-300 and BN-600 (300 and 600 MWe), PFR (250 MWe)</td>
<td>FSV (842 MWt)</td>
<td>THTR (750 MWt) (^b)</td>
</tr>
<tr>
<td>Commercial Demonstration</td>
<td>Yankee Rowe (485-600 MWe)</td>
<td>Superphenix (3000 MWh), BN-800 (600 MWe)</td>
<td></td>
<td></td>
<td>HTR-PM (200 MWe)</td>
</tr>
</tbody>
</table>

\(^a\) The Soviet experience with lead-bismuth eutectic cooled submarine reactors is relevant but not directly applicable to the LFR point design, therefore they are considered engineering demonstration reactors for the LFR.

\(^b\) The Aircraft Reactor Experiment and MSRE were liquid fueled reactors, with different coolant chemistry than the salt-cooled FHR demonstration reactor point design.

\(^c\) FSV and THTR were commercial demonstrations of large HTGRs, however, for modular HTGRs under consideration today, they serve the role of a performance demonstration.
EVOLUTION OF SFR DESIGN

- Early power reactors were focused on performance demonstration of reliability, not cost reduction
 - BN-600 showed reliable operations, but not a commercial demonstration

- Many design refinements introduced in 1980s-2010
 - Design simplification, system integration and compaction, modular fabrication, power upgrades, etc.
 - Some examples follow: PRISM, BN800 to 1200, JSFR

- Modern designs further refined to current market applications
 - Distributed architecture to segregate non-nuclear components, informed project execution approach, adapt for grid variability, etc.
 - An example follows: Natrium
PRISM DESIGN – COST REDUCTION APPROACH

PRISM SFR was pioneer on modularization
- Factory fabrication
- Construction and transport benefits
- Learning curve for cost reduction

Design was refined in DOE ALMR Program and subsequent work by GE Hitachi
- Compact modular pool configuration
- Electromagnetic pumps – no moving parts
- Optimized plant for minimal footprints
- Multi-module shared infrastructure

Inherent safety allows design simplifications

Optimizing the Size of the SUPER-PRISM Reactor, Boardman et al., ICONE-8 (2000)
Economic Assessment of S-PRISM Including Development and Generation Costs, Boardman et al. ICONE-9 (2001)
RUSSIAN BN DESIGNS – COST REDUCTION

Russian SFR design has evolved in the BN reactors
- BN-600 design reflect BN-350 challenges
- BN-800 is a further performance demonstration
 • Maintain BN-600 reliability, but improve cost
 • Roughly same size as BN-600
 • Power output increased to 880 MWe

BN-1200 design large cost reductions for commercial
- Simplified, compact configuration
- Large modular steam generators
- Simplified refueling system
- Elimination of ex-vessel storage
- High density, high burnup nitride fuel

Claim new design will require 50% less steel

Development of the New Generation Power Unit with the BN-1200 Reactor, Vasilev et. al. FR19 Conference
JAPAN JSFR DESIGN – COST REDUCTION APPROACH

JSFR incorporated innovative cost reduction features
- Advanced materials
- Large 1500 MWe plant with 2 loop configuration
- Integrated pump-IHX component
- Compact, modular fab vessel
- High burnup fuel

Quantitative cost comparisons in paper
- ~25% reduction from FOAK
- 10% of Monju construction cost
- Higher commodity cost than APWR, but, greatly reduced volume/emergency systems cost
- With innovative technologies, net lower cost than APWR is achieved

https://aris.iaea.org/PDF/JSFR.pdf
Resulting benefits

- A distributed architecture allows major parts of the Natrium plant to be built to less demanding standards, reducing cost and construction time.
- Energy island systems can be constructed as a fully commercial (non-nuclear) project.
- These benefits do not require additional technology development.

Approx. cost multipliers based on experience of nuclear constructors:

1.0x 1.2x 3.0x 5.0x
Natrium Reactor Storage and Ramping Balance a Renewables-Based Grid

Significant price volatility from solar daily / seasonal variability - WECC Region

Demand profile, renewable generation and power prices on typical 48 hour periods in summer and winter

Summer
- Limited generation needs as wind + solar can almost satisfy all demand during the day
- Low day-time prices with short and sharp price spike in early evening as solar tails off
- *Residual demand = net demand after wind and solar*

Winter
- More volatile prices driven by shorter daylight hours – two price peaks per day
- Solar variability can produce oversupply and power curtailment in peak supply times

* TerraPower Proprietary & Confidential - Exempt from Disclosure Under FOIA"
SUMMARY

20 Demonstration SFRs have been built and operated
 – Technical viability of SFR technology confirmed
 – Reliable operations demonstrated in BN-600 over 40 years
 – Power reactors, but not commercial demonstration to date

Modern SFR designs incorporate demonstrated inherent safety features
 – High conductivity metal alloy fuel form
 – Negative temperature coefficient through multiple feedbacks
 – Passive decay heat removal systems

Economics
 – Many, significant cost reduction features employed in modern designs
 – Most recent performance demo – BN-800 shows improvement
 – Thus, modern, innovative designs have the potential to be competitive
 – But efficacy of cost reduction features needs to be demonstrated (to verify improvement performance, cost, and reliability)
QUESTIONS
SODIUM VOID WORTH

For context,

- SFRs operate at low pressure with significant margin to boiling (~350°C)
- The inherent reactivity feedbacks are effective at maintaining this margin, even in severe accident conditions
 - As temperature increases and materials expand, a net negative reactivity feedback is inherently introduced
 - Power is reduced
 - New equilibrium is established once temperatures adjust to heat removal rate

- The traditional challenge to coolant boiling margin in CRBR and other large SFR licensing cases was for an unprotected loss of flow (ULOF) double safety system fault event
 - With oxide fuel, significant reactivity is introduced as fuel cools (page 37)
 - This slows the power reduction rate, with voiding before power reduces sufficiently
 - This behavior does not occur with metal fuel alloy fuel, where the low operating temperature does not result in significant positive Doppler feedback

- This favorable inherent behavior to prevent fuel damage was demonstrated in United States sodium-cooled fast reactors (SFR)
 - EBR-II for double fault transients (1986) for both ULOF and loss-of-heat-sink
METALLIC FUEL SAFETY PERFORMANCE: LOW OPERATING TEMP AND STORED DOPPLER REACTIVITY

- High temperature of oxide fuel implies more stored Doppler
- As power inherently decreases in undercooling event, peak and asymptotic temperatures are determined by reactivity balance

Oxide Fuel
(Doppler Coeff. = -0.005)

~1.5 $

Metallic Fuel
(Doppler Coeff. = -0.003)

~0.3 $
The issue of positive coolant void worth was addressed in the PRISM Preapplication Safety Evaluation Report (NUREG-1368)

- Positive Void Reactivity Coefficient is identified as a concern in Section 3.1.2.7
 - "for sodium voiding to occur, redundant and diverse safety-grade systems would have to experience multiple failures"
 - "Staff conclude that positive sodium void coefficient should not necessarily disqualify a particular reactor design"
 - However, further analyses were identified
 - "Staff will take into account the overall risk perspective"

- The GE paper below captures some of the following discussion with NRC on PRISM licensing
 - "all means identified to lower the void worth have resulted in core designs with other safety issues and with increased costs"

- Subsequent analyses show benign severe accident behavior for metal alloy fuel
 - Melting point of fuel is lower than coolant boiling point
 - This promotes dispersive fuel behavior leading to large negative reactivity effects

U.S. ALMR Licensing Status, Magee, Advanced Reactor Safety Topical Meeting (April 1994)