What do we need to understand about populations and places to prepare communities for future environmental changes?

Deborah Balk

Remarks prepared for
Integrating the Human Sciences to Scale Societal Responses to Environmental Change: A Workshop
National Academy of Sciences, Board on Environmental Change and Society
4 May 2023
Certainties in an Uncertain Century

- **Climate Change**
 - Hotter (in most places)
 - More variability in weather
 - Sea levels will rise
 - More flood prone
 - Stormier
 - Drier

- **Demographically**
 - Urbanization
 - Aging

NPCC2 (2015)
Populations at-risk estimation

- We estimated for the first time that...
 - 1:10 person lives in the Low Elevation Coastal Zone (LECZ)
 - Most countries with any land area in the LECZ, have their largest city in it
 - Small Island States and deltaic countries (and their cities) at much higher risk
 - 1:8 urban person lives in the LECZ
 - City dwellers in Africa and Asia disproportionately at risk
 - Most future population growth to take place in the cities and towns of Asia, Africa and LAC

Persons living in the LECZ (millions), by continent (2000)

Simple method, but depends on the quality of the data: demographic + satellite data

- Population (census) data is reported in irregular administrative units
 - Underlying spatial resolution varies by country and year
 - Transform to a quadrilateral grid (not shown)
 - Reallocation to grid ranges from lightly to heavily modelled

- Method is applicable to most hazard
 - Accuracy and themes depend on underlying census (or survey unit)

Updated in MacManus et al., 2021
Conclusions (c. 2007)

- The LECZ covers 2 per cent of the world’s land area but contains 10 per cent of the world’s population and 13 per cent of the world’s urban population.
- A disproportionate number of the countries with a large share of their population in this zone are small island countries, but most of the countries with large populations in the zone are large countries with heavily populated delta regions.
- On average, the low-income countries have a higher share of their population living in the zone (14 per cent) than do OECD countries (10 per cent), with even greater disparities in the urban shares (21 per cent compared to 11 per cent).
- Almost two-thirds of urban settlements with populations greater than 5 million are situated, at least partly, in the zone.
- In some countries (most notably China), urbanization is driving a movement in population towards the coast.
- Reducing the risk of disasters related to climate change in coastal settlements will require a combination of mitigation, migration and settlement modification.

The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones

Gordon McGranahan, Deborah Balk, Bridget Anderson

First Published April 1, 2007 | Research Article
https://doi.org/10.1177/0956247807076960
Update! Why? Improvement in underlying data & models

LECZ data and models
- Improvements in the spatial (horizontal and vertical) dimensions of Digital Elevation Model (DEM) data and modelling of its imperfections since 2000
- Allows for distinguishing two zones: 0-5m and 5-10m contiguous to coast

Population data and models
- Improvements in resolution of underlying census data
- Many new models of population distribution; some with time-series
- Allows for range of spatial population estimates, and change over time*

Urban-proxy data and models
- Big improvements and time-series since GRUMP; much progress in remote-sensing community since mid-2000
 - Opening up of Landsat archive, higher resolution satellites (sentinel) → settlement models
 - New class of lights data, and inter-comparisons over time
- Allow for distinguishing urban areas along a continuum:
 - Characterize the built-up and population density of locations;
 - and Comparison of different urban classification schema, and change over time*

* Temporal data can inform future projections
Many data choices

- Elevation → LECZ
 - Coastal DEM, MERIT, SRTM, TanDEM-X

- Urban Construct
 - Night Lights-based, Settlement, Degree of Urbanization, GRUMP
Many data choices

• Gridded Population Models
 – GHS-POP
 • 1990-2015
 – GPW
 • 1990-2015
 – LandScan
 • 2000-2015
 • Restricted use
 – WorldPop

• Differ in:
 – Underlying data
 – Modelling inputs
 – Modelling methods

See Leyk et al. 2019
Changes over Time

- Urban areas have experienced the greatest increase in population, from 1990-2015 but
- Urban areas within the LECZ have grown even faster than outside the LECZ
 - 75% increase in urban center pop in LECZ vs. 59% in urban centers outside of LECZ
 - Urban Center population in the 0-5m LECZ growth been fastest of all
 - Global averages driven by change in Asian cities (next)

Data shown for Population: GHS-Pop
Urban: GHS-SMOD
LECZ: MERIT-DEM
Sensitivity Analysis: Data choices matter!

Data choices can lead to differences in estimates
- Large differences in estimates of potential SLR and coastal hazards
- While high agreement for urban centers and rural areas, but less so for the harder-to-classify areas (towns, peri-urban, sub-urban, etc)

Consistency in estimation
- Despite important differences, every source we evaluated shows that LECZs
 - are disproportionately urban
 - urban population in the LECZ is growing at a rate faster than we see outside of the LECZ

Fitness for use matters
- Depends on respective use cases
- Change over time?
- Better local data?
“Top ten” countries at risk

- Deltas at risk, particularly in Asia!
- Small Island States (SIS), too.

<table>
<thead>
<tr>
<th>Country (Rank)</th>
<th>Count (000s)</th>
<th>Count %</th>
<th>Count (000s)</th>
<th>Count %</th>
</tr>
</thead>
<tbody>
<tr>
<td>China (1)</td>
<td>129,507</td>
<td>(23)</td>
<td>181,635</td>
<td>(17)</td>
</tr>
<tr>
<td>India (2)</td>
<td>55,216</td>
<td>(8)</td>
<td>70,827</td>
<td>(7)</td>
</tr>
<tr>
<td>Bangladesh (3)</td>
<td>40,912</td>
<td>(47)</td>
<td>62,875</td>
<td>(44)</td>
</tr>
<tr>
<td>Indonesia (4)</td>
<td>34,805</td>
<td>(24)</td>
<td>47,402</td>
<td>(23)</td>
</tr>
<tr>
<td>Japan (5)</td>
<td>26,593</td>
<td>(32)</td>
<td>33,446</td>
<td>(29)</td>
</tr>
<tr>
<td>Viet Nam (6)</td>
<td>23,871</td>
<td>(62)</td>
<td>44,556</td>
<td>(60)</td>
</tr>
<tr>
<td>United States of America (7)</td>
<td>17,607</td>
<td>(11)</td>
<td>23,027</td>
<td>(10)</td>
</tr>
<tr>
<td>Thailand (8)</td>
<td>16,811</td>
<td>(81)</td>
<td>21,460</td>
<td>(54)</td>
</tr>
<tr>
<td>Egypt (9)</td>
<td>14,200</td>
<td>(24)</td>
<td>25,579</td>
<td>(30)</td>
</tr>
<tr>
<td>Philippines (10)</td>
<td>12,998</td>
<td>(33)</td>
<td>19,038</td>
<td>(32)</td>
</tr>
</tbody>
</table>

Total population (000s) living in Urban Centres and Quasi-Urban Clusters in the LECZ: Ranked by Population in Urban Centers

<table>
<thead>
<tr>
<th>Country (Rank)</th>
<th>Count (000s)</th>
<th>Count %</th>
<th>Count (000s)</th>
<th>Count %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guyana (1)</td>
<td>226</td>
<td>100</td>
<td>447</td>
<td>95</td>
</tr>
<tr>
<td>Suriname (2)</td>
<td>201</td>
<td>100</td>
<td>356</td>
<td>97</td>
</tr>
<tr>
<td>Thailand (3)</td>
<td>16,811</td>
<td>81</td>
<td>21,460</td>
<td>54</td>
</tr>
<tr>
<td>Bahamas (4)</td>
<td>169</td>
<td>80</td>
<td>259</td>
<td>83</td>
</tr>
<tr>
<td>Netherlands (5)</td>
<td>6,027</td>
<td>77</td>
<td>9,731</td>
<td>70</td>
</tr>
<tr>
<td>Mauritania (6)</td>
<td>1,175</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Djibouti (7)</td>
<td>474</td>
<td>69</td>
<td>508</td>
<td>63</td>
</tr>
<tr>
<td>Liberia (8)</td>
<td>1,053</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viet Nam (9)</td>
<td>23,871</td>
<td>62</td>
<td>44,556</td>
<td>60</td>
</tr>
<tr>
<td>United Arab Emirates (10)</td>
<td>3,875</td>
<td>57</td>
<td>4,407</td>
<td>53</td>
</tr>
<tr>
<td>French Guiana</td>
<td></td>
<td></td>
<td>141</td>
<td>69</td>
</tr>
<tr>
<td>Belize</td>
<td></td>
<td></td>
<td>152</td>
<td>58</td>
</tr>
</tbody>
</table>

Note: Countries with a total population of under 100,000 people, or smaller than 1,000 square kilometres were excluded from this list.
Growth, 1990-2015

- Growth highest in the deltaic LECZ
 - Everywhere, but especially in the level of built-up in the LECZ05 in Asia (not shown)

- Growth higher in deltaic regions of E and SE Asia, both in population and built-up (not shown)
Source: Tagtachian and Balk (in review), Uneven Vulnerability: Characterizing population composition and change in the Low Elevation Coastal Zone in the United States with a climate justice lens, 1990-2020
US LECZ Study, 1990-2020

Differs from global study in that we use 4 decades of census data, with a richer set of variables:

- Pop and land exposures, urban vs. rural
- Age distribution, Race/Ethnicity, Housing Tenure

Differs from prior studies in the US (e.g., NOAA, Hauer) in that the finest spatial unit available in the census is used:

- Coastal counties here defined as having any land area in the LECZ
- But census blocks (rather than tracts or counties) with any land area in the LECZ are then summarized to the county
Visualizing the data inputs

- Variables available at the block-level are limited
 - Change in measures over time limit them further
 - 2020 block data is limited to PL release
States and Counties at Risk

• Of the ~3,000 counties in the lower 48 states
 – 390 (~13%) have any land area in the LECZ, with more 34 million persons at risk (1:6 person).
 – Population exposure is even more concentrated with only 55% of the population exposure found in the top 25 counties.
Exposures differ by vulnerability

Age & Urban/Rural

Race & Ethnicity

Housing Tenure

Other vulnerabilities include:

- Income/wealth, disabilities, English proficiency, certain occupational groups, social isolation/social networks, medical conditions, where people live/work, and so on…
Percent of Population 65+

- In 1990, one out of every 8 persons, averaging across all residents of coastal states, was over age 65.
 - From 1990-2010, we see an additional 6 million and small increase in the proportion 65+ to 12.9% in coastal states, on average (not shown in graph).
- Residents of the LECZ are older than average (14.6% in 1990, rising to 15.2% in 2010).
- This is true urban and rural areas.
 - 15% of urban residents in the LECZ are over age 65, vs. only about 12% outside it;
 - in 1990, 13.6% of the rural dwellers in the LECZ were over age 65 as compared to 12.1% outside of the LECZ;
 - by 2010 these shares had risen substantially, to 16.9% within the LECZ and nearly 15% outside of it.
Florida has much higher shares of older adults -- over 18% statewide in 1990 – than elsewhere in the US (not shown).

- While increasing by nearly 1 million older residents, the % of older adults decline to 17.3% of the state population in 2010.

In 1990, 1:5 residents of the LECZ in Florida was over age 65, with even slightly higher proportions in the urban LECZ.

- Like the statewide trend, these fractions declined somewhat by 2010 (while the population itself is rising).

The annual growth rate of older adults (at 1.6% per year) is larger in Florida than elsewhere (1.3% for the coastal states average).
Race & Housing Tenure (2010)

Homeowners (Whites overrepresented)

- Almost 70% of White householders owned their home (inside and outside the LECZ),
- In comparison, only a little over 45% of Black and Hispanic households owned their home (inside and outside the LECZ).

Renters (Blacks/Hispanics overrepresented)

- More than 50% of Black and Hispanics households were in renter-occupied units (inside and outside the LECZ),
- In comparison, only around 30% of Whites were in renter-occupied units (inside and outside the LECZ).

<< Black and Hispanic householders were almost twice as likely than Whites to live in urban renter-occupied housing units within the LECZ.
Why Housing Tenure Matters

• Climate change is augmenting and accelerating the affordable housing crisis.
 – While low-income residents are particularly vulnerable in areas that are prone to flooding or other coastal hazards,
 – Low-income homeowners and renters are likely to experience flooding, storms, and sea-level rise differently since homeowners (particularly middle and lower-income homeowners) are likely to be less mobile and renters tend to have less equity.
Take aways

Use approach with any spatially delineated hazard

- Heat or drought, wildfires, inland (pluvial) flooding, ...
- Notably, remote-sensing and environmental data are more and more available and easier to use
 - Measures of vulnerability and demographic change however come from censuses and surveys so we must be prepared to work with interdisciplinary methods and perspectives
- Some hazards are harder to study (storm paths) so think of new ways to capture this information but many significant improvements have taken place in the past two decades so we should work collective to address important new concerns

Embrace publicly available data and engage with it

- National statistical office continue to improve and make available increasingly thematically rich, spatial data
 - They even welcome feedback. This helps to prepare communities.
- Use place-based finding to help improve our understanding of causal processes behind vulnerability and the demographic components of change
- Work with communities to find out what matters most to them
- Work with regions becomes communities are connected!
Collaborators on the research presented here

Core Project Teams
Deborah Balk, CUNY
Hasim Engin, CUNY and CIESIN
Kytt MacManus, CIESIN (Columbia)
Gordon McGranahan, (formerly) IDS
Daniela Tagtachian, CUNY

Funding from:
1. World Resources Institute for the Coalition for Urban Transitions
2. Andrew Carnegie Fellowship of the Carnegie Corporation of New York
3. NASA SEDAC

RAs and Interns:
Maria Brandao-Sze, CUNY Kori Mascheck, CUNY
Alexandra Hays, CIESIN Jessica Miller, CUNY
Rya Inman, CIESIN Florian Mudekereza, CUNY
Shahnoza Kurbonshoeva, CUNY Chelsea Wepy, CUNY