Moltex technology

An overview for the National Academies of Sciences, Engineering, and Medicine committee on fuel cycles and waste aspects of advanced nuclear reactors

February 23, 2021

By Rory O’Sullivan, Chief Executive Officer, North America
Why Moltex was founded

Overnight capital cost of nuclear over time

Koomey & Hultman (2007)
What are the options for low-cost nuclear?

Gas cooled fast reactor
- Costly high pressure system and expensive new solid fuel system

TRISO fuelled reactors
- Excellent safety but published fuel cost estimates show cannot compete with gas/coal

Sodium fast reactor
- Highly dependent on engineered safety

Lead cooled fast reactors
- Better than sodium, but new materials needed

Molten salt reactor
- MAYBE? Step change in intrinsic safety at lower cost than TRISO

Supercritical water
- Not credibly cheaper
Reducing risk

Hierarchy of controls

- **Elimination**: Physically remove the hazards
- **Substitution**: Replace the hazards
- **Engineering controls**: Isolate people from the hazards
- **Admin controls**: Change the way people work
- **PPE**: Protect the worker with personal protective equipment

Moltex approach

Post-Chernobyl
Two ways to use molten salt fuel

Conventional MSRs

- Intensely radioactive fuel salt pumped at pressure round an engineered system which can never be approached by a human being

Stable Salt Reactor platform

- Fuel salt placed in fuel assemblies
- New concept, patent now granted worldwide
Why is this a new idea?

- “Static” molten salts in fuel pins rejected by ORNL because convection of fluids would be unreliable in an aircraft – but convection is essential for heat transfer in unpumped fluids

- Decision not revisited for ground-based reactors

Aircraft reactor experiment which led to molten salt reactor experiment
Fuel pin comparison
Technology benefits

1. **Costs less**
 Moltex’s design is smaller, simpler and inherently safe, making it low-cost to build and operate.

2. **Reduces waste**
 Moltex recycles waste from existing nuclear power stations, and uses it to produce more clean energy.

3. **Enables renewables**
 Moltex can store energy and supply it to the grid as needed, enabling intermittent renewables.

4. **Cogeneration**
 Moltex can produce heat for heavy industry and hydrogen production.
Advanced reactor design

REACTOR CORE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal power</td>
<td>750 MWth</td>
</tr>
<tr>
<td>Refueling cycle</td>
<td>Online refueling</td>
</tr>
<tr>
<td>Thermal or fast neutrons</td>
<td>Fast</td>
</tr>
</tbody>
</table>

FUEL

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical composition</td>
<td>55%XCl₃ : 45%KCl where X = Pu-U-An-Ln</td>
</tr>
<tr>
<td>Physical form</td>
<td>Stable molten salt in pins</td>
</tr>
</tbody>
</table>

CLADDING

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Physical form</td>
<td>Each fuel assembly has hexagonal pins inside a hexagonal wrapper</td>
</tr>
</tbody>
</table>

COOLANT

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical composition</td>
<td>MgCl₂ / NaCl</td>
</tr>
<tr>
<td>Physical form</td>
<td>Molten salt flowing through reactor core</td>
</tr>
</tbody>
</table>
Refuelling

Cross between SFR and CANDU

- Online refuelling
- Hex fuel assemblies with channel like BWR
- Vertical lift like PWR/SFR
- Cycle duration (between refuelling) – 6-12 days
- Assembly average residence time – 6.3 years
SSR-W fuel

Chloride fuel with high impurity level

PuCl₃, 22.2%

LnCl₃*, 6.6%

AnCl₃**, 2.3%

UCl₃, 23.9%

KCl, 45.0%

Pu vector is approximately 2/3 fissile based on CANDU spent fuel composition. U vector is below natural enrichment levels.

*Ln=Lanthanides; **An=Actinides

Corrosion control in fuel pins by addition of Zr metal
Low-cost thermal energy storage at grid scale from solar industry
Impact of GridReserve on capital cost

- Rest of plant costs are **high confidence** as similar to CCGT and CSP plants and not subject to nuclear regulation. Errors, optimism bias, etc. in nuclear island costs have relatively little impact on total cost.
- GridReserve triples the capacity for double the cost
- GridReserve is a fraction of the cost of lowest future battery cost
- Only possible with high temperature reactors
Stage 1 – Chemical decladding of used fuel
WATSS: WAste To Stable Salt

Stage 2 – Electroreduction of oxide pellets to alloy form and separation of fission products
Stage 3 – Conversion of alloy to fuel salt. Clean uranium remains.
Stage 4 – Fuel salt poured into SSR-W fuel assembly
WATSS waste streams for first fuel load

- **Stage 1**: CANDU fuel bundle 100%
 - Zr in cladding recycled in coolant 21%

- **Stage 2**: Depleted fuel pellets 79%
 - Uranium + actinide alloy 78.5%

- **Stage 3**: U alloy 77.9%

- **Stage 4**: Fission products 0.5%
 - Fuel salt 0.6%

Process
- Long-lived waste
- Low-activity uranium
- Potential reuse
WATSS waste streams during SSR-W operation

- CANDU fuel bundle 100%
- Deciad fuel pellets 79%
- U + actinide alloy 78.5%
- U alloy 77.9%

- Spent SSR-W fuel 100%
- Remaining fuel 93%
- Extraction of fission products 7%
- Top up fuel salt 7%
- Back to SSR-W

- Zr in cladding recycled in coolant 21%

- Mixing New SSR-W fuel 100%

- Process
- Long-lived waste
- Low-activity uranium
- Potential reuse
WATSS: Key advantages

• SSR-W reactor burns Pu and higher actinides

• Much of the cost of traditional pyro-processing is in separating Pu from other chemically similar actinides and lanthanides (rare earth elements)
 • This high purity separation is required for any oxide or metal fuel fabrication
 • The WATSS recycling process is therefore simpler and cheaper

• Residual waste streams contain no higher actinides
 • Makes storage/disposal easier and cheaper
US spent fuel disposition

50 GW
Cogeneration

SSR-U
Thermal spectrum reactor

SSR-W
Fast spectrum reactor

HTE
Low-cost electricity

LTE
Industrial process heat

Hydrogen

Industrial processes

High temperature industrial processes

Ammonia

Synthetic fuels

Fuel cells

Heavy transport

Heating
Challenging licensing issues

Regulatory challenges associated with waste management

• Lack of standards and regulations around nuclear fuel recycling

• US export controls around reprocessing make international collaboration extremely challenging

Moltex implementation plan for commercializing nuclear energy system

• Step 1: Perform laboratory scale tests to obtain critical parameters for the operation, process design and reactors design

• Step 2: Perform real tests at hot cell scale

• Step 3: Commission and operation of industrial scale as part of the FOAK facility in Point Lepreau nuclear site
Current US activities

Rapid construction studies with c. U$4M grant from ARPA-E

• Accelerated construction methods by Purdue University
• Hazard and operability study with EPRI
 • Expert working groups identifying all fault scenarios and failure modes (expanded PIRT)
• Fast reactor physics with Argonne National Laboratory
 • Transient and static analysis of all major fault groups
• Oak Ridge salt studies
 • Fission product vapor and from salts
 • Dose release for severe accidents
 • Molten salt / concrete interactions in severe accidents
SSR-W milestones

2021-2024
• Laboratory scale tests conducted and engineering design completed
• CNSC Vendor Design Review phase 2 completed

2025-2027
• Hot cell tests performed and detailed design completed
• Licences to prepare site and construct obtained

2028-2031
• FOAK facility at Point Lepreau commissioned and constructed
• First SSR-W core ready for commercial operation
Summary of key points

• Molten salt fuel in essentially conventional fuel assemblies is a genuinely new concept that eliminates many of the novel challenges of an MSR.

• Eliminates conventional nuclear hazard which radically simplifies safety case

• GridReserve enables lower cost renewables

• The SSR-W can reduce legacy waste from the first nuclear era

• Canada, UK and US governments aligned on nuclear policy

• Moltex has a utility partner and is progressing demonstration, planning expansion into US market
Thank you

Rory O'Sullivan, Chief Executive Officer, North America

roryosullivan@moltexenergy.com

+1 437 778 4232