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Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Presentation objective: 

• Provide an overview of changes related to MSE wall 
design in AASHTO 2020

• Describe differences in the design methods
• Describe limitations in the use of these methods 

(extensible reinforcements)
• Discuss design impact of these changes



Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Topic Presenter Duration

Introduction and Summary of Changes Alzamora 5 min

Review of current design methods
• Coherent Gravity 
• Simplified 

Alzamora 10 min

Introduce new design methods
• Limit Equilibrium
• Stiffness

Leshchinsky
Allen

20 min
20 min

Impact on Design Alzamora 5 min

Questions Han 25 min



Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Why add new design methods?

• The Simplified Method has not been good at predicting reinforcement loads as 
compared to measured loads, particularly for extensible reinforcements.

• Goal of the changes are to update and improve the requirements for internal 
stability design of MSE walls.



Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

How did we get here?
• AASHTO T15/FHWA MSE Task Force

• Started 2012 – one focus area was MSE internal stability
• Composed of MSE leaders in academia, consulting, and the industry
• Assessed best path forward (limit equilibrium, and new stiffness method)
• Recommended research needed and eventual adoption

• AASHTO T15 and COBS
• Beginning in 2014, continued this assessment
• Used formal AASHTO COBS process through T15 mid-yr meetings, the annual AASHTO COBS 

meetings, and e-mail
• Final decision: 

• adopt the Stiffness Method for geosynthetic walls
• allow the continued use of the Simplified Method
• Use limit equilibrium for situations that are beyond empirical basis for the other methods, and for compound stability

• Adopted in the AASHTO LRFD Specifications as the “Stiffness Method” in 2019 
(published 3-2020)



Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Changes to MSE wall design

Change in Tmax calculation
• Existing methods

• Simplified Method
• Coherent Gravity Method (inextensible Reinforcement)

• New methods
• Stiffness Method
• Limit Equilibrium 
• These methods are limited in AASHTO to extensible reinforcements only

Change in Overall Stability Calculation
• Service limit vs strength limit 



Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

What is Tmax?

Z

Sv

Reinforced Fill
Unit weight (γ)
Friction angle (ф)
Active earth Pressure (ka)

σv

Tmax is the force acting on the MSE 
reinforcement at any given depth.

Tmax is a function of the:
• vertical stress
• strength of the soil
• spacing of the reinforcement
• Reinforcement stiffness
• Facing

Tmax

Source: FHWA



Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Simplified Method

VHMAX SσT =

SV is vertical reinforcement spacing, for 
equally spaced reinforcements

VaH σ)/(Kσ ar KK=
Z

Sv

Reinforced Fill
Unit weight (γ)
Friction angle (ф)
Active earth Pressure (ka)

σv

......  Zγσ rV +=

Source: FHWA

Source: FHWA NHI-10-024 



Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Coherent Gravity Method

VHMAX SσT =

SV is vertical reinforcement spacing, for 
equally spaced reinforcements

VaH σ)/(Kσ KaKr=

)2/(σV eLW −=

Source: FHWA
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Reinforced Fill
Unit weight (γ)
Friction angle (ф)
Active earth Pressure (ka)
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Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

New Methods to calculate Tmax

2020 AASHTO – Incorporates the use of 
these new design methods for extensible 
reinforcements.
• Limit Equilibrium
• Stiffness Method
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Roadmap of Presentation
Limit Equilibrium Analysis: Global Approach
The Safety Map Tool
Limit Equilibrium Analysis: Baseline 

Solution 
Limit Equilibrium: Design Approach
Limit Equilibrium: Instructive Examples
Concluding Remarks 



Global Limit Equilibrium (LE)
- Simple yet applicable to complex problems
- Vast experience
- MSE: Subset of slope stability analysis
- No arbitrary distinction between ‘wall’ and ‘slope’
- Global LE design is half-cooked Strength of 

reinforcement is examined globally while locally 
required strength, including connections, is 
overlooked Ignores local demand by smearing 
(shedding) the load amongst all layers

∴Does not deal explicitly with ‘Internal Stability’  
which is concerned with local demand  Provides 
an important, but narrow, design perspective 



Roadmap of Presentation
Limit Equilibrium Analysis: Global Approach
The Safety Map Tool
Limit Equilibrium Analysis: Baseline 

Solution 
Limit Equilibrium: Design Approach
Limit Equilibrium: Instructive Examples
Concluding Remarks 



The Safety Map Tool
Baker and Leshchinsky (2001) introduced the 

concept of, and coined the term, Safety Map

Safety Map = Visual diagnostic tool for the 
state of stability of reinforced soil mass

Design Objective: Select strength & layout of 
reinforcement to produce an efficient 
structure that is adequately stable



Example Problem

Homogeneous Soil:
γ=20 kN/m3

φ=28°



Unreinforced Problem (Bishop)



Adequate Reinforcement Layout using 
Circular Arc (Bishop)



Roadmap of Presentation
Available Limit State Methods of Analysis
Limit Equilibrium: Global Approach 
The Safety Map Tool
Limit Equilibrium Analysis: Baseline 

Solution (aka Internal Stability) 
Limit Equilibrium: Design Approach
Limit Equilibrium: Instructive Examples
Concluding Remarks 



Baseline: Inverse of Safety Map…
Safety Map finds the spatial distribution of global 

safety factors, SF, in a reinforced soil mass

Conversely, Internal Stability analysis in LE 
produces the local tensile resistance needed for 
Fs=SF=1.0 everywhere 

The Internal Stability approach produces the 
baseline solution: Tension Map, Treq(x), including 
Tmax and To for each layer  It leads to a rational 
and robust selection of reinforcement and facing



Tension Map: Visualization of Treq(x)



The Framework: Process in Nutshell 
Check numerous test bodies adjusting Treq(x)

for each layer so that SF=1.0  Use a 
systematic top-down process

For Treq(x) distribution, failure along any 
surface is equally likely  Treq(x) therefore is 
termed Baseline Solution Tension Map 

The tension, Treq(x), may be limited by pullout 
at the rear and/or front ends

Treq(x) is the resistance needed locally to yield 
a structure at a limiting equilibrium state



Details: Baseline & Pullout

1. Treq(x) 2. Rear pullout constraint

3. Front pullout… oops 4. Adjust front pullout
 Upwards shift is To
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Limit Equilibrium: Global Approach 
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Advancement of Current Design
Apply the LE design approach in two stages: 
Internal Stability and Global Stability
Stage I:  Internal stability - Find Treq(x) in all 
reinforcements - Baseline Solution
Consider geometry, loading conditions, 
reinforcement layout, pullout resistance, batter, 
water, seismicity, etc.
Stage II: Global stability – consistent with 
current design  Standard slope stability  Not 
discussed here



Conduct Global Stability Why use 
then Internal Stability? 
- Reinforcement resistance in 
Global Stability is evenly divided 
amongst all layers  Results in 
Tmax that is smaller than in Internal 
Stability  Global ignores local 
demand through ‘smearing’

- Global Stability tells us nothing
about connection load, To 

Global Stability: Locus of Tmax
is NOT on a singular surface. 



Stage I: Internal Stability
 Find Treq(x) including Tmax & To (connection)

Determine max(Tmax) to select geosynthetic

 LTDS=Fs-strength×max(Tmax-i) where Fs-strength=1.5

 Tult=LTDS× 𝑹𝑹𝑹𝑹𝒄𝒄𝒄𝒄 × 𝑹𝑹𝑹𝑹𝑹𝑹 × 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹

 Stage I is a rational and robust alternative to existing 
approaches Consistent with principles of LE and 
is not arbitrary  Ensures no overstressing 



Roadmap of Presentation
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Limit Equilibrium: Global Approach 
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Benchmark Problem

Retained Soil:
γ = 18 kN/m3

φ = 30° & c = 0

Reinforced Soil:
γ = 20 kN/m3

φ = 34° & c = 0

1

10

Foundation Soil: γ = 18 kN/m3 , φ = 30° , c = 10 kPa

L=4.2 m (L/H=0.7)

Sv=0.6 m

F* = α = 0.8; Cds=0.8; Fs-po=1.5

H=
6 m



Computed Distribution of Treq(x) 



Computing Tmax in Internal Stability: 
Critical Circles 

1. Hypothesis in  AASHTO: 
locus of Tmax is defined 
by a singular slip 
surface. Is it?

2. Well-defined active and 
resistant zones. Is it?



Tmax and To Distribution 

max(Tmax): LE 10.9 kN/m AASHTO19.3 kN/m



Horizontal Displacement Distribution: 
Serviceability 

Knowledge of Treq(x) for 
Fs=1.0 Estimation of 
the lateral displacement 
at a limit state 
e.g., for J=500 kN/m 



Effects of Secondary Layers 

Secondary Layers: 
L=1.2 m, Sv=0.6 m
Primary Layers:
L=4.2 m, Sv=0.6 m

Primary Layers:
L=4.2 m, Sv=0.3 m



Tmax and To: 
Secondary versus Close Spacing

Sv=0.3 mPrimary/Secondary Layout 

Depending on relative length of secondary reinforcement, it may 
decrease Tmax. Generally it has significant effects on To.



Effects of Backslope 
2(h):1(v) backslope
Backslope Rise 2.1 m

Flat Crest 



Computing Tmax in Internal Stability: Critical Circles

Note: 
Global Stability 
Top 4 layers are 
not needed for 
stability. 
Baseline Solution, 
Stage I 
Identifies the 
need for these 
layers!



Effects of Backslope:
Tmax and To

Flat CrestBackslope: 2(h):1(v) with 2.1 m rise



Effects of Facing: Small Blocks

Blocks: γu=20 kN/m3; Wu=0.3 m; 
Hu=0.20 m; ‘cu’=10 kPa & φu=30°



Effects of Small Blocks Facing:
Tmax and To

No Facing
Small Blocks Facing Units

Large blocks or high interblock and toe resistance may reduce 
significantly the need for reinforcement (length and strength)



3(v):1(h) Two-Tier Wall 

γ=20 kN/m3

φ=34° & c=0
γ=18 kN/m3

φ=30° & c=0

H=6 m; L=4.2 m 
Setback = 1.2 m 



Tension Map: 2-Tier Wall
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Concluding Remarks 
- Baseline Solution: Fs=1.0 on soil strength is 

used to determine LTDS, consistent with 
Internal Stability principles  LRFD can be 
used, same as in AASHTO

- AASHTO has approved the LE approach as 
presented in FHWA-HIF-17-004

- Tmax and To: Global stability ignores possible 
local overstressing while the Baseline Solution 
considers local demand rationally 

- Global LE: Applicable to external stability --
sliding, eccentricity, and bearing load



Thank You!



Tony Allen 
WSDOT
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Internal Stability of MSE 
Walls:

The Stiffness Method



Historical Background - Research
• Available methods obviously conservative
• Analysis of many instrumented case histories 1990’s 

through 2010’s
– 85 full scale field walls (449 Tmax measurements), half of which were 

steel reinforced MSE walls
– 16 full scale lab test walls at RMC (665 Tmax measurements), 2 of 

which were steel reinforced MSE walls, taken to near failure
– Numerical (FLAC) modeling

• New Tmax prediction method (K-Stiffness) in 2003
• Reformulated in 2015 - Simplified Stiffness Method



Advancements and /or Advantages of Stiffness Method 
over Prior Ones

• Addresses key parameters known to affect reinforcement loads
• More accurate Tmax prediction
• Can address a wider range of soils
• Handles facing batter more accurately
• Seamless across all soil reinforcement types (including steel)
• Can address service limit to assess and design for reinforcement strain
• LRFD calibrated



Simplified Method Tmax Prediction



Does not include all polymer strap walls

Stiffness Method Tmax Prediction



EQUATION EQUIVALENCY

Tmax = SvσvK = Sv[γr z + γf S] Ka(Kr/Ka)

Tmax = Sv [γrHDtmax + γf(Href/H) S] Kavh Φfb Φg ΦfsΦlocalΦc

Same equation for geosynthetic and steel reinforcement MSE wall types

Simplified Method

Stiffness Method



EQUATION EQUIVALENCY

Tmax = SvσvK = Sv[γr z + γf S] Ka(Kr/Ka)

Tmax = Sv [γrHDtmax + γf(Href/H) S] Kavh Φfb Φg ΦfsΦlocalΦc

Simplified Method

Stiffness Method



PRACTICAL APPLICATION OF
STIFFNESS METHOD

Tmax = Sv (γrHDtmax) Ka Φg 

Tmax = Sv(γr z) Ka(Kr/Ka)Current Simplified Method

Only new input needed is 1,000 hr, 2% secant reinforcement stiffness - can be obtained 
from published AASHTO NTPEP reports (and Allen and Bathurst 2019)

Φg = 0.16 (Sglobal/Pa)0.26

Sglobal = ΣJ/H 
= global reinforcement stiffness

J = reinforcement stiffness
H = height of wall
Pa = atmospheric pressure

Stiffness Method



Tmax Distribution
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For z < zb :

For z ≥ zb: 

Dtmax = 1.0

Ch = 0.32 when H is in ft
Ch = 0.40 when H is in meters
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Distribution Factor, Dtmax = Tmax/Tmxmx

Layer i + 1

Layer i

Layer i - 1

Tmax Sv

z

H

Simplified Method
Ti distribution

H = 20 ft
H = 40 ft

H = 80 ft

Stiffness Method

Wall Face



Tmax = Sv (γrHDtmax + γf(Href/H) S) Kavh ΦfbΦg ΦfsΦlocalΦc

Φg = Tmax (measured) / [ Sv (γrHDtmax + γf(Href/H) S) Kavh ΦfbΦfsΦlocalΦc ]

Back-calculation of Global Stiffness Factor Φg

Sglobal = ΣJ/H 
= global reinforcement stiffness

J = reinforcement stiffness
H = height of wall
Pa = atmospheric pressure

Φg = 0.16 (Sglobal/Pa)0.26



EQUATION EQUIVALENCY

Tmax = SvσvK = Sv(γr z + γf S) Ka(Kr/Ka)

Tmax = Sv (γrHDtmax + γf(Href/H) S) Kavh ΦfbΦg ΦfsΦlocalΦc

Facing stiffness factor

Φfs = η((Sglobal/pa)Ff)κ

3
a

f 3
eff

1.5H pF
Eb (h / H)

=
H

heff

b

Facing

Reinforcement

E = facing modulus



EQUATION EQUIVALENCY

Tmax = SvσvK = Sv(γr z + γf S) Ka(Kr/Ka)

Tmax = Sv (γrHDtmax + γf(Href/H) S) Kavh ΦfbΦg ΦfsΦlocalΦc

Corrects for the influence of wall facing batter. 
If ω = 0 (vertical wall) then Φfb = 1

If ω > 0 (battered wall) then Φfb < 1

Facing batter factor

ω

  
K
K

Φ
d

avh

abh
fb 








= and d = 0.4



EQUATION EQUIVALENCY

Tmax = SvσvK = Sv(γr z + γf S) Ka(Kr/Ka)

Tmax = Sv (γrHDtmax + γf(Href/H) S) Kavh ΦfbΦg ΦfsΦlocalΦc

Local reinforcement stiffness factor

Φlocal =
Slocal

Slocalave

a
Slocal =

J
Sv

Slocalave = Σ
J

Sv
/n

a = 0.5 for geosynthetics
a = 0 for steel

n = total number of layersNote:  this factor is usually required for very tall walls.



Application of the Stiffness Method to MSE Wall Design

• Limit states to be considered
– Soil “failure” (Service Limit)
– Reinforcement rupture (Strength Limit)
– Connection failure (Strength Limit)
– Pullout (Strength Limit)

• Amount of reinforcement needed
– Soil failure limit – usually controls
– Connection failure – controls only if connection is very inefficient
– Pullout – may control for polymer straps



Load and Resistance Factors for Stiffness Method

Limit State
(Tmax) Load Factor
γEV, γcon and γsf

Resistance Factor
ϕrr , ϕcr and ϕsf

G
eo

sy
nt

he
tic

Reinforcement and connection 
failure – geogrids and 
geotextiles

1.35 0.80

Reinforcement and connection 
failure – polymer straps

1.35 0.55

Soil failure 1.2 1.0

Pullout (default model in 
AASHTO)

1.35 0.70



Stiffness Method Soil Failure Limit State:

• Working stress conditions may not apply if there is a contiguous 
failure surface through the reinforced soil zone.

• As specified in AASHTO (2020), keep factored peak reinforcement 
strains in wall < 2% for stiff faced walls, and <2.5% for flexible 
faced walls, to maintain (soil) working stress conditions.

• These target maximum strains are 0.5% strain more conservative 
than recommended in the Allen and Bathurst (2018) ASCE paper.

𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝛾𝛾𝑝𝑝−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

φ𝐸𝐸𝐸𝐸𝐽𝐽𝑟𝑟
≤ 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚



Relating Creep Stiffness to Tensile Strength



Design Approach

• Soil failure limit state usually controls design (start with this)
– Determine reinforcement stiffness needed for each layer to meet maximum allowed reinforcement 

strain
– If Φfs = 1.0, use strain limit for flexible walls even for stiff faced wall systems (i.e., per AASHTO, 

2.5%)
– Estimate reinforcement ultimate strength needed to obtain required stiffness

• Then check reinforcement rupture, connection rupture, and pullout using 
stiffness needed for soil failure limit to calculate Tmax



PET geogrid, AASHTO design, Tultconn = 1.0Tult

Min. strength available



Range of Applicability for the Stiffness Method

Height Range:  15 to 35 ft for modular block facing, 13 to 41 ft wrapped facing
Average Soil Surcharge: 0 to 8 ft
Facing batter from vertical:  0 to 27o

Triaxial or direct shear φ: 24 to 47o

Cohesion:  0 to 350 psf
Fines content: 0 to 91%
Vertical spacing of reinforcement (Sv): 0.8 ft to over 3 ft
Rc: 0.18 to 1.0
Sglobal for geosynthetics = 2,500 to 192,000 psf

If have typical conditions for which compound stability could control, must 
check results with limit equilibrium analysis (e.g., steep toe slope, continuous 
sloping soil surcharge above wall, foundation on top of wall, weak or 
compressible foundation soil).

This method does not work well for MSE walls supporting bridge footings, as 
the soil failure limit state design becomes overly conservative.
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Design Impact Summary for Stiffness 
Method Relative to Previous Design 

Practice (i.e., Simplified Method)



PET geogrid, AASHTO design
Tultconn = 1.0Tult

Target strain = 2% Target strain = 2%

HDPE geogrid, AASHTO design
Tultconn = 1.0Tult

Min. strength available Min. strength 
available

Design Required for 20 ft High Modular Block Faced Wall



PET geogrid, AASHTO design
Tultconn = 1.0Tult

Target strain = 2% Target strain = 2%

PET geogrid, AASHTO design
Tultconn = 0.5Tult

Min. strength available
Min. strength 
available

Design Required for 20 ft High Modular Block Faced Wall
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Impact on Design –
Extensible reinforcements



Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Illustration of some of the design differences for specific parameters. 

Source: FHWA



Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

Impact on Design – Extensible reinforcements

1. More accurate model to represent loading of reinforcement
2. Generally require less reinforcement for walls under 25-ft 
3. Little change for walls over 25-ft
4. New methods allow us to take into account

• Facing contribution
• Variable lengths of reinforcements



Updating Designs for Mechanically Stabilized Earth Walls in AASHTO

QUESTIONS?



Moderator: Jie Han, 
University of Kansas

Dov Leshchinsky

Today’s Panelists
#TRBWebinar

Daniel Alzamora

Tony Allen



Get Involved with TRB

#TRBwebinar
Receive emails about upcoming TRB webinars
https://bit.ly/TRBemails

Find upcoming conferences
http://www.trb.org/Calendar



Get Involved with TRB

Be a Friend of a Committee bit.ly/TRBcommittees
– Networking opportunities

– May provide a path to Standing Committee membership

Join a Standing Committee bit.ly/TRBstandingcommittee

Work with CRP https://bit.ly/TRB-crp

Update your information www.mytrb.org

#TRBwebinar

Getting involved is free!



#TRBAM is going virtual!

• 100th TRB Annual Meeting is fully virtual in 
January 2021

• Continue to promote with hashtag #TRBAM
• Registration is open!
• Check our website for more information



#TRB100
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