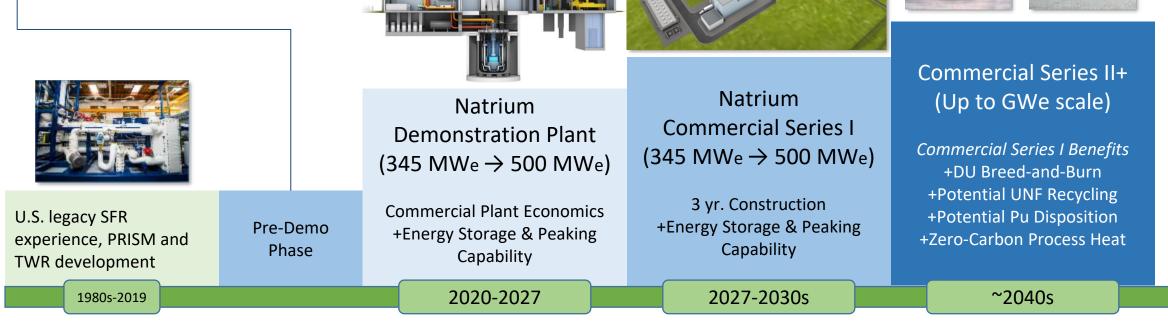
NATRIUM

Presentation to National Academy of Sciences Engineering and Medicine

Tara Neider

February 22, 2021

Copyright © TerraPower, LLC and GE Hitachi Nuclear Energy Americas, LLC. 2021. All Rights Reserved



Natrium Roadmap – Ready for Demonstration

Mature commercial plant design

Further establish compelling commercial case Focus on cost and economics Refine technology development needs Develop IES technology & revenue modeling U.S. NRC engagement

2

What is Natrium[™] Technology?

- A high readiness Sodium-cooled Fast Reactor (SFR) with the following benefits:
 - A *new plant architecture* that minimizes cost and construction time
 - Simpler, less costly safety systems compared to current generation reactors
 - Grid-scale *energy storage* to complement renewables
 - Fuel cycle flexibility that facilitates global export
 - **O** Utility-scale decarbonization

3

NATRIUM Single Unit Site Firewater

Standby Diesels

Warehouse & Admin–

Rx Aux. Building

Shutdown Cooling.

Control Building

NI Power Distribution Center & Controls Demin Water

Steam Generation

Salt Piping

Rx Building

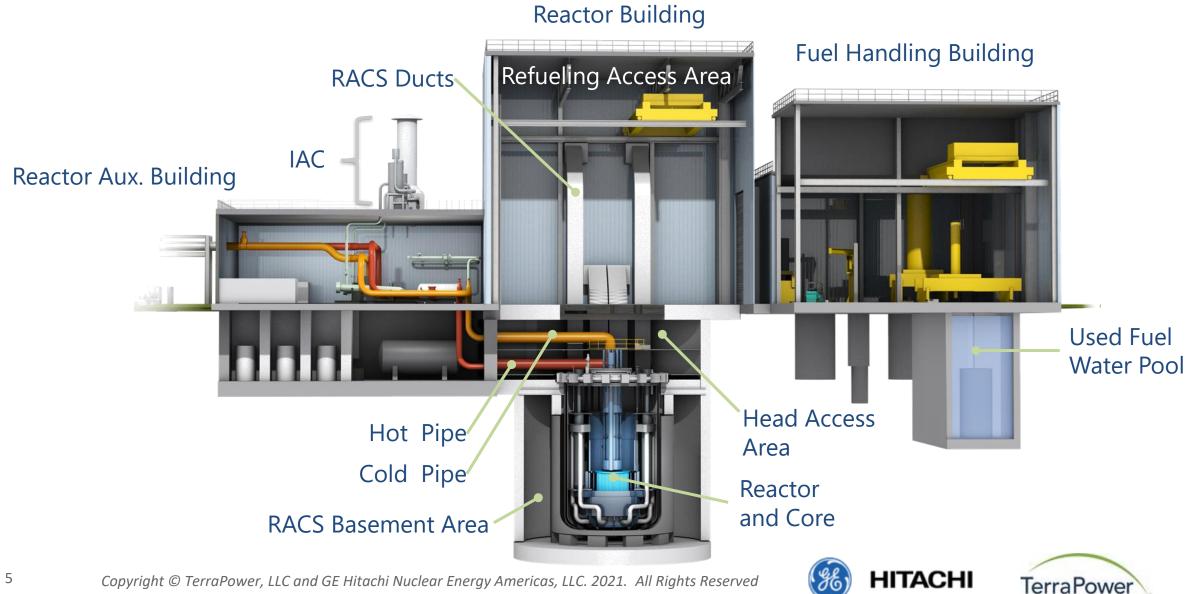
Turbine Building

TI Power Distribution Center

Energy Island

Inert Gas

Energy Storage Tanks


_Fuel Building

_Fuel Aux. Building

Nuclear Island

Copyright © TerraPower, LLC and GE Hitachi Nuclear Energy Americas, LLC. 2021. All Rights Reserved

Reactor Building

Thermal Storage

Thermal Storage

HITACHI

- Number of tanks based on customer's energy need
- Steam generator trains based on size of turbines
- Turbine size based on customer's power need

Sodium Coolant and Molten Salt Properties

- 390-540°C Reactor Coolant Operating temperature
- 880°C Boiling Temperature
- 98°C Melting Temperature
- Sodium inventory -800 m³ in reactor
- Operates at atmospheric pressure
- Molten Salt used for heat storage is the same as used for solar plants
- Temperature range 238°C 621°C salt; 60 NaNO₃- 40 KNO₃

What is Different

Architectural Innovations

Simple Nuclear Systems

- No sprawling nuclear piping and support equipment
- Exceptional heat transfer
- Passive air cooling
- Low pressure

Dramatic O&M Cost Reduction

- Less equipment to maintain
- Natrium Service Group

Inherent Safety

Decoupled

 Bulk of plant constructed & operated without nuclear practices

Simple Nuclear Buildings

• 20 vs. $105 \frac{m^3}{MWe}$ nuclear concrete

Simple Nuclear Construction

- Steel sided buildings
- Below ground reactor
- Minimal engineered backfill Efficient Construction Layout
- High degree of parallel work Staffing
- 65 125 staff Flexible
- 8%/min ramp rate

Concentrated Solar Power

- Energy storage in molten salt
- Steam generator & salt pump technology

Argonne Integral Fast Reactor

- 30 years of EBR-II operation
- Proven inherent characteristics
 Tunneling
- Vertical cut excavation

Combined Cycle Gas Turbine

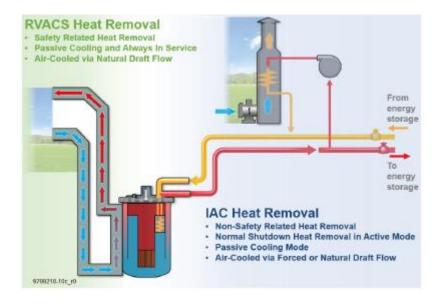
- Construction approaches
- Aggressive staffing
- Fast burst power ramping

Adjacent Industries

Copyright © TerraPower, LLC and GE Hitachi Nuclear Energy Americas, LLC. 2021. All Rights Reserved

- Low-pressure pool reactor with no piping or fittings below the surface of the pool
- Guard vessel prevents loss of coolant if reactor vessel were to leak
- Fuel material compatible with coolant. Minor fuel cladding breaches are benign where the fuel material is not chemically reactive with the coolant.
- Sodium absorbs many of the released fission products, especially iodine and cesium. Sodium's affinity for fission products also limits the inventory that reaches the cover gas.
- Reactor cover gas operates at essentially atmospheric pressure so there is little to no driving force for a release.
- Intermediate coolant, by static head alone, is at a slightly higher pressure than the primary coolant.
- The only systems connected to the primary coolant boundary, cover gas and sodium cleanup, are automatically isolated by passive fail close valves.

Reactivity Control


- Non-safety related reactor control system acts as a buffer to prevent the need for a scram. It detects abnormal operation and initiates a runback via motor driven insertion of neutron absorbing control rods to achieve a softer shutdown than a scram.
- Safety related reactor protection system exists to initiate a scram should the reactor control system fail or a properly initiated runback fails to prevent the reactor from reaching a scram setpoint. The high reliability scram function is initiated by removing electrical power to an electromagnet, resulting in passive gravity insertion of all control and standby rods into the core.
- The core is designed with a negative temperature and power coefficient that is strong enough such that the reactor can accommodate anticipated transients without scram for events such as a loss of primary flow, loss of heat sink and uncontrolled rod withdrawal. The natural feedbacks are self regulating and will always find a low power level at which the production and heat removal are in balance.

Cooling

- 3 Defense in Depth Features
 - Reactor Air Cooling (Inherent) designed to remove all decay heat (SR)
 - Intermediate Air Cooling Heat Removal
 - Non-Safety Related Heat Removal
 - Normal Shutdown Heat Removal in Active Mode
 - Passive Cooling Mode
 - Air-Cooled via Forced or Natural Draft Flow

Challenging Licensing Issues for Commercialization

- Review Time is biggest issue; We are confident in our design and licensing strategy but guidance on non-LWR licensing is incomplete; Positions being developed now and requirements could change.
- PRISM Pre-licensing Safety Evaluation used as basis for Natrium development; outstanding issues addressed

Technical Challenges for Commercialization

- HALEU Supply
- Development of Supply Chain for critical components
- Our Development program includes significant testing and qualification, particularly in areas of low TRL.
- Ready for demonstration with improvements to lower commercial costs.

Natrium Team Committed to 7-year Time Frame

PSAR/CPA in 30 months (Phased Approach)

FSAR/OLA by 54 months

First Safety Concrete 48 months

Construction Complete 78 months

