The critical role of sunscreen formulation in efficacy & environmental exposure.

Kurt A. Reynertson, Ph.D.
Global Lead & Fellow, Ingredient Policy & Stewardship

Disclaimer: This presentation is intended for educational purposes only. Statements of fact and opinions expressed are those of the presenter individually and, unless expressly stated to the contrary, are not the opinion or position of Johnson & Johnson Consumer, Inc. or its affiliates.
UV light can cause sunburn and skin damage and lead to an increased risk of skin cancer.
Sunsunscreen is the only OTC drug indicated for the prevention of cancer.

- Skin cancer is the most common form of cancer in the U.S., with more annual cases than breast, prostate, lung and colon cancers combined.¹
- Approximately 9,500 Americans are diagnosed with skin cancer every day. More than two people die of the disease every hour.¹⁻³
- According to the WHO, following sun-safe practices can help prevent 4 out of 5 cases of skin cancer.⁴
- Sunscreens are critical to protecting skin from the sun – even one bad childhood sunburn can double your chance of developing melanoma later in life.⁵
Sunscreens are regulated by the FDA to ensure they meet safety and effectiveness standards.

• OTC sunscreen drug products must follow Drug Facts labeling content and format requirements in § 201.66 (21 CFR 201.66).

• Labeling requirements for marketed OTC sunscreen drug products are set forth in § 201.327 (21 CFR 201.327).

• SPF, broad spectrum, and water-resistant testing requirements and the indications and claims allowed based upon the results of these tests are in § 201.327(i) and (j).

• “Sunblock” and “Water-proof” are NOT allowed.

• Other claims like “reef-safe,” “biodegradable” and “environmentally-friendly” are unregulated.
A diverse palette of UV filters is necessary to provide broad-spectrum coverage for all skin types.

- UV filters are not interchangeable.
- There are only 8-9 commonly-used FDA-approved filters in the US. Any new filters would require FDA approval prior to use.
- Most US filters are effective UVB filters.
- Only Oxybenzone and Zinc oxide are broad-spectrum (covering UVB & UVA).
- Avobenzone is the only organic UVA filter.
Proper formulation is a critical factor for protection with sunscreens. Each filter has unique properties (light-stable, biodegradable, compatibility, hydrophobic/hydrophilic, mineral/organic) that affect overall formula performance.

UV filter system
- UVA + UVB filters to achieve specified SPF, photostability, and broad-spectrum coverage

Water
- Lotions

Film Formers
- Evenly distribute filters, create structural matrix, improve SPF, and water resistance

Emollients
- Surface distribution, improve droplet size and texture

Emulsifiers
- Solubilize filters

Thickeners
- Waxes

Minimal UV transmittance
- Good Coverage

Partial UV transmittance from uneven or heterogeneous deposition of UV filter leaves consumers poorly protected
- Uneven Coverage

Consumers poorly protected
- Poor Coverage
Consumer needs are personal.
Stable, aesthetically pleasing formulas are created to meet the needs of all consumers.

- Dermatologists agree the best sunscreen is the one people prefer to use.
- A variety of choice in sunscreen is important to meet consumer needs, helping them to follow sun protection guidelines.
- People consider several factors in choosing a sunscreen including:
 - SPF
 - Product form, e.g. stick, lotion or spray
 - How it feels, ease of spread, mineral/organic
 - Special needs, e.g. sensitive or acne-prone skin, sports, wet skin, fragrance/no-fragrance
- People are routinely observed to apply 25-50% of the 2 mg/cm² density utilized by standard SPF testing.⁶
Formulation determines water resistance and skin adherence.
Global Aquatic Ingredient Assessment (GAIA) is an internal J&J Consumer Health tool used to evaluate ingredients and formulations end of life impacts on aquatic ecosystems and waterways after use.

- Ingredients/ formulas are given scores from 0-100 based on published and/or modeled data on persistence, bioaccumulation and ecotoxicity.
- Over 1400 ingredients currently scored and integrated into our R&D systems.
- Ingredient scores can be aggregated for a product formula score.

A refined environmental risk assessment requires an accurate exposure model.

• Legislation has been enacted that is not based on robust ERAs

• Previously published ERAs use assumptions or poorly controlled studies that have led to exposure models that overestimate the risk of sunscreen actives in the environment.7-10

• More refined exposure models should be based on rigorous experimental methods and empirical evidence.

• Habits & practices studies to understand consumer use can also be used to build exposure models.6

• Environmental monitoring cannot determine source and suffers from collection and analytical challenges.10
Development of a novel rinse-off method for improved sunscreen exposure assessment*

Jennifer K. Saxe,1 Stacy Dean,2 Randy L. Jones,2 Larry A. Mullins,2 Kurt A. Reynertson

• We sought to develop a novel, reproducible, and reliable method coupled with robust analytical methods to measure UV filter elution from sunscreen formulas applied to skin in a simulated marine environment.

• Objective:
 – Use the rinse-off method in the development of a more refined environmental risk assessment for key UV filters, and
 – Help make more informed formulation choices for future product development.

1EcoSafety Sciences; 2Battelle Memorial Institute. *Manuscript accepted in Integrated Environmental Assessment and Management (IEAM)
Rinse-off study methods were based on FDA water resistance criteria to simulate recreational bathing.

• Skin specimens were sectioned into small pieces and placed into custom holders. Sections were stored at 60-70% relative humidity in a saturated magnesium nitrate salt box.

• A positive displacement pipet was used to dispense a standard volume of sunscreen (0.5 & 2 mg/cm²). Sunscreen formulations (stick, spray, & 2 lotions) were analyzed in triplicate.

• After 20 min, sections were dipped into a containers with 250 mL of ~28 °C seawater* (T=0), and then removed and incubated sequentially with gentle oscillation (100 RPM) to new containers for 10 min (T=10), 10 min (T=20), air dried for 20 min, & final 20 min rinse (T=60). Skin sections and glass jars were rinsed with ethyl acetate for a mass balance.

• After SPE clean-up, a GC-MS/MS method was used for organic analysis, ICP-MS for mineral analysis. LODs and LOQs for each target compound were determined.

*Natures Ocean seawater contains live marine bacteria, trace elements, and other nutrients that approximates natural seawater. Method adopted from US FDA test method 352.76, Determination if a product is water resistant or very water resistant.
Lotions, sticks and sprays were tested.

<table>
<thead>
<tr>
<th></th>
<th>Octisalate</th>
<th>Homosalate</th>
<th>Octocrylene</th>
<th>Avobenzone</th>
<th>Oxybenzone</th>
<th>ZnO</th>
<th>TiO₂</th>
<th>Water Resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stick O</td>
<td>5%</td>
<td>15%</td>
<td>10%</td>
<td>3%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Lotion O1</td>
<td>5%</td>
<td>10%</td>
<td>2.8%</td>
<td>3%</td>
<td>6%</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Lotion O2</td>
<td>5%</td>
<td>9%</td>
<td>9%</td>
<td>2.7%</td>
<td>4.5%</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Stick M</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Lotion M1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6%</td>
<td>7%</td>
<td>No</td>
</tr>
<tr>
<td>Lotion M2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>21.6%</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Lotion M3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25%</td>
<td>1%</td>
<td>N/A</td>
</tr>
</tbody>
</table>

O = organic; M = mineral; all formulas are SPF 50-55

Results for organic sunscreens are included in IEAM manuscript; mineral results not yet peer-reviewed.

Spray formulations were very hydrophobic, presenting some analytical challenges. Results are not included, but UV filter retention appears similar to sticks.
UV filter rinse-off is driven by formulation and application rate.

- This model is suitable for preparing replicate test samples to evaluate UV-filter removal in seawater. **This is the first well-controlled study of its kind.**
- Overall, stick formulations had the lowest rinse-off recoveries (0-5% for most analytes).
- Rinse-off was not a linear function of application rate or formula concentration.
- The factors that drive formulation efficacy, stability, and consumer acceptance also drive potential rinse-off.
UV filters applied to skin & rinsed into seawater is formula, ingredient and application dependent

O = organic; M = mineral. Results for organic sunscreens included in IEAM paper; mineral results not yet peer-reviewed.
To meet the needs of consumers and manage environmental exposure, a diverse palette of UV actives, excipient choices, and sunscreen formats is critical.
References Cited

7) Danovaro R; Bongiorni L; Corinaldesi C; Giovannelli D; Damiani E; Astolfi P; Greci L; Pusceddu A. 2008. Sunscreens Cause Coral Bleaching by Promoting Viral Infections. Environ. Health Perspectives 116: 441-447.

9) Sharifan H; Klein D; Morse AN. 2016. UV filters are an environmental threat in the Gulf of Mexico: a case study of Texas coastal zones. Oceanologia 58:327-335.

Questions?