Overview and Scope of NRC’s Seismic Hazard Analyses

Dogan Seber, Chief
Structural, Geotechnical, and Seismic Engineering Branch
Division of Engineering
Office of Nuclear Regulatory Research
DISCLAIMER NOTICE

The opinions expressed in this presentation are those of the author, and do not necessarily reflect the view of the U.S. Nuclear Regulatory Commission.
US Nuclear Regulatory Commission

MISSION:
NRC licenses and regulates the Nation’s civilian use of radioactive materials to protect public health and safety, promote the common defense and security, and protect the environment.
Outline

• US NRC’s Seismic Hazard Analyses and Regulatory Perspectives
• Seismic hazard assessments for NPPs
• Seismic hazard assessments for spent fuel dry storage systems
• Seismic hazard assessments for fuel cycle facilities
• Ongoing research activities at the US NRC
Independent Spent Fuel Storage Installations

Fuel Cycle Facilities
Seismic Hazard Analyses for NPPs

- Hazard analyses for NPPs are the most rigorous, requiring in-depth analyses and calculations
- Site-specific
- When available, approved seismic source and ground motion models provide an expedited pathway to acceptable results
- Must conform to established regulations
Satisfying the Regulations

Regulatory Guide, RG 1.208 ‘A Performance-based approach to define the site-specific earthquake ground motion’, provides general guidance on procedures acceptable to the NRC staff to satisfy the Geologic and Seismic Siting Criteria outlined in 10 CFR 100.23.

Elements of Seismic hazard Analyses:

- Establish seismic source characterization models
- Establish ground motion prediction models
- Conduct Probabilistic Seismic Hazard Analysis (PSHA)
- Incorporate site response analysis
- Determine Ground Motion Response Spectra (GMRS)
Pathway to GMRS

- Site Selection
 - Geologic Investigations
 - Seismological Assessments

- Development of Earthquake Catalog
 - Identification of Seismic Sources

- Development of Seismic Source Models

- Ground Motion Prediction Models

- Site-specific, Seismic Hazard Curves - Generic Rock Conditions
 - PSHA Analysis
 - Site Response Analysis

- Site-specific Uniform Hazard Response Spectra at Surface

- Performance-based Site-specific GMRS

- Local Site Structure, Rock/Soil Physical Parameters
Seismic Source Models

- For the Central and Eastern United States (CEUS) there is an ‘NRC approved’ seismic source model that can be used as a starting model for any site in this region.

- For sites in the western United States, there are no approved starting seismic source models. Each applicant/licensee needs to develop its own seismic source model using acceptable methodologies (i.e., Senior Seismic Hazard Analysis Committee [SSHAC] processes)
CEUS Seismic Source Model

- Published as NUREG 2115 in January 2012
- Joint effort by NRC, DOE, and EPRI
- A generic, starting model applicable to any CEUS site
- Incorporates scientific information on seismic sources capable of producing earthquakes in the CEUS
- Composite model with varying alternatives
- Used in new reactor applications as well as re-assessment of seismic hazards for operating nuclear power plants.
CEUS Seismic Sources – Type 1/3
Repeated Large Magnitude Sources (RMLEs)
CEUS Seismic Sources – Type 2/3
Maximum Magnitude (Mmax) Sources
CEUS Seismic Sources – Type 3/3
Seismotectonic Sources
(one of four alternatives shown)
Ground Motion Prediction Models

- For the CEUS, there are approved ground motion models that can use used in PSHA calculations.
- As part of the Fukushima seismic re-evaluation, the industry established a working group and updated the EPRI (2004 and 2006) GMPEs in February 2013.
- Office of Nuclear Regulatory Research had a major effort to update the existing EPRI GMPEs under a collaborative project (NGA- East). Almost completed, but not yet formally reviewed and endorsed by the NRC.
Incorporating Local Site Effects into PSHA Calculations

• Local site characteristics are studied using geotechnical, geologic, and geophysical methods
• Dynamic properties of subsurface material are obtained through in-situ and laboratory measurements as well as geophysical methods
• Can be applied to hard-rock PSHA results, or directly incorporated into the PSHA calculations
Developing Performance-based Ground Motion Response Spectra (GMRS)

- Performance is measured in terms of Frequency of Onset of Significant Inelastic Deformation (FOSID), essentially elastic behavior
- Performance Target (P_{FT}) is 1×10^{-5} per year
 - IPEEE Seismic PRAs conducted for 25 NPPs during mid/late 1990s determined annual seismic Core Damage Frequency values
 - Median SCDF is 1.2×10^{-5}/yr
Performance-Based Approach to Determine the site-specific GRMS

ASCE 43-05 and RG 1.208 define GMRS as:

\[PB \ GMRS = DF \times UHRS_{10^{-4}} \]

\[DF = \text{Max} \ (0.6A_R^{0.8}, 1.0) \]

\[A_R = \frac{UHRS_{10^{-5}}}{UHRS_{10^{-4}}} \]

DF: Design Factor
AR: Hazard curve slope
UHRS_{10^{-5}} and UHRS_{10^{-4}}: mean Uniform hazard response spectra with annual probability of exceedance of 10^{-5} and 10^{-4}
NPP Site Specific Ground Motion vs. Design

Plant Design

Site-specific Ground Motion Response Spectra (GMRS)

Sa (g)
Spent Fuel Dry Storage Facilities

- Must conform to regulations defined in 10 CFR 72.103
- Can be
 A: Site-specific (similar to NPP analysis)
 B: General license (under an existing NPP)
- NUREG 1567 ‘Standard Review plan for Spent Fuel Dry Storage Facilities’ provides how NRC reviews these seismic hazard studies
Fuel Cycle Facilities

• Must conform to regulations defined in 10 CFR 70.22
• Seismic hazard assessed using established building codes
• NUREG 1520 ‘Standard Review Plan for Fuel Cycle Facilities License Applications’ provides how NRC reviews these seismic hazard studies
Current Activities at US NRC

• Under an Interagency agreement with the USGS, assessing existing seismic source and ground motion models to identify areas needing modification/improvement
• Multi-dimensional site response analyses
• Continuous assessments of seismic hazards at the operating nuclear power plants
• Participation in international activities through the IAEA to develop guidance on physics-based simulations, probabilistic fault displacement hazard analyses and PSHA validation methodologies.
Conclusions

• NRC is a key consumer of new data, information, and knowledge gained by the scientific community at large
• NRC conducts its own confirmatory research activities and works with outside partners in government (e.g., USGS) and academia to address regulatory needs
• NRC seismic hazard analyses follow unique sets of requirements that highlight the importance of constant engagement between scientific community and policy makers
Backup Slides
Probabilistic Seismic Hazard Analysis (PSHA)

Input 1: Seismic Sources

Input 2: Earthquake Recurrence

Input 3: Ground Motion Models

Output: Seismic Hazard Curves

Modified from Reiter (1990)
Pathway to Performance-Based GMRS

Seismic Source Models
- Based on geologic investigations
- Ground Motion Prediction Equations
- Earthquake Catalog

Site-specific Corrections (Geotechnical Observations)

Generic Rock, Uniform Hazard

Seismic Hazard Curves

Comparison with Design

Surface UHRS at site

PSHA
Characterize Seismic Hazard

\[\lambda(S_a > x) = \sum_{i=1}^{n_{sources}} \lambda(M_i > m_{\text{min}}) \sum_{j=1}^{n_M} \sum_{k=1}^{n_R} P(S_a > x \mid m_j, r_k) P(M_i = m_j) P(R_i = r_k) \]

magnitude recurrence curve such as Gutenberg-Richter (G-R)

use ground motion prediction equation for \(S_a \)

model distribution of distances from earthquakes to site

develop pdf assuming bounded G-R recurrence with \(m_{\text{min}} \) and \(m_{\text{max}} \)
Performance-Based Approach to Determine the site-specific GRMS

ASCE 43-05 and RG 1.208 define GMRS as:

\[PB \ GMRS = DF \times UHRS_{10^{-4}} \]

\[DF = \text{Max} \ (0.6A_R^{0.8}, 1.0) \]

\[A_R = \frac{UHRS_{10^{-5}}}{UHRS_{10^{-4}}} \]

DF: Design Factor
AR: Hazard curve slope
UHRS_{10^{-5}} and UHRS_{10^{-4}}: mean Uniform hazard response spectra with annual probability of exceedance of 10^{-5} and 10^{-4}