Shortcuts causing bias in medical imaging Dr. Judy Gichoya Associate Professor of Radiology and Informatics Emory University #### Disclosures - RSNA - Associate Editor Radiology Al Trainee Editorial Board - CIRE & RIC Committee member - SIIM - Co-chair Research Committee - Board member - Advisory council - Association for Health Learning and Inference (AHLI) - Fairness of AI in medical imaging (FAIMI) - AHA Debiasing clinical care algorithms (DECCA) - Council of medical specialty societies Encoding Equity Initiative - ASCO Al community of practice - American College of Radiology Al Advisory Council - Softbrew LTD - Consulting on Global Health/Clinical informatics - Funding - Clairity Consortium - NIH AIM-AHEAD consortium development program - Harold Amos Faculty Award to study Al bias - Lacuna fund for creating diverse medical datasets - LUNIT for breast DBT evaluation - R01 NHLBI Grant for opportunistic screening for ASCVD using multimodal AI - Winship invest cancer disparities pilot grant - Journal Editorial Boards - British Journal of Radiology:Al - NEJM AI #### Outline - Define shortcuts in deep learning - Describe shortcut examples in various medical images and approaches/strategies for detection and mitigation - Describe the impact of shortcuts on bias, and how to harness and overcome these biases #### Shortcut learning in deep neural networks Robert Geirhos ^{1,2,4} ^{1,2}, Jörn-Henrik Jacobsen^{3,4}, Claudio Michaelis ^{1,2,4}, Richard Zemel^{3,5}, Wieland Brendel^{1,5}, Matthias Bethge^{1,5} and Felix A. Wichmann ^{1,5} Task for DNN #### Where do shortcuts come from? Few samples Many samples **ERM Classifier:** f(X) = cow if background is grass; else camel **Spurious Strength**: Image → Background → Animal (2 ingredients) **Invariant Strength**: Image → Animal (Informal) ERM learns on the shortcut when spurious strength > invariant strength #### Shortcut learning in pneumonia prediction | Characteristic | IU | MSH | NIH | |-----------------------------|-------------|----------------|----------------| | Patient demographics | | | | | No. patient radiographs | 3,807 | 42,396 | 112,120 | | No. patients | 3,683 | 12,904 | 30,805 | | Age, mean (SD), years | 49.6 (17.0) | 63.2 (16.5) | 46.9 (16.6) | | No. females (%) | 643 (57.3%) | 18,993 (44.8%) | 48,780 (43.5%) | | Image diagnosis frequencies | | | | | Pneumonia, No. (%) | 39 (1.0%) | 14,515 (34.2%) | 1,353 (1.2%) | Zech, John R. et al "Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study." PLoS medicine 15, no. 11 (2018): e1002683. #### Shortcut learning in dermatology ## Shortcut learning for COVID-19 prediction DeGrave, A.J., Janizek, J.D. & Lee, SI. Al for radiographic COVID-19 detection selects shortcuts over signal. Nat Mach Intell 3, 610–619 (2021) ### Shortcut learning for hip fracture detection Badgeley, M.A. L. et al. Deep learning predicts hip fracture using confounding patient and healthcare variables. npj Digit. Med. 2, 31 (2019). ### Shortcut learning for hip fracture detection Badgeley, M.A. L. et al. Deep learning predicts hip fracture using confounding patient and healthcare variables. npj Digit. Med. 2, 31 (2019). ## Shortcut learning for Medical Image Analysis | Site A | Site C | | Þ | Site D | | |-------------|--------------|-----------|--------|----------|---------| | | Site | Precision | Recall | F1-Score | Support | | | A | 0.912 | 0.975 | 0.943 | 598 | | | В | 0.995 | 0.999 | 0.997 | 771 | | | C | 0.998 | 0.998 | 0.998 | 1,267 | | | D | 0.998 | 0.996 | 0.997 | 990 | | | E | 0.939 | 0.805 | 0.867 | 287 | | | Macro Avg | 0.969 | 0.954 | 0.960 | 3,913 | | | Weighted Avg | 0.980 | 0.980 | 0.979 | 3,913 | | है न | [3 | | 1000 | | | ## Shortcut learning for Medical Image Analysis #### Shortcut learning in segmentation models | Image | Anatomical plane | | | | | | |---------------------------|------------------|------------------|------------------|------------------|--|--| | image | Head | Abdomen | Femur | Cervix | | | | Test set w annotation | 76.97 ± 5.10 | 82.06 ± 6.60 | 93.82 ± 1.79 | 76.29 ± 4.05 | | | | Test set w/o annotation | 70.85 ± 8.24 | 78.85 ± 7.72 | 91.84 ± 4.87 | 71.81 ± 4.86 | | | #### Shortcut learning in segmentation models Lin, Manxi, et al. "Shortcut Learning in Medical Image Segmentation." *arXiv* preprint arXiv:2403.06748 (2024). #### Shortcut learning in segmentation models d: distance from the outer ring to the centre of the mask (b) Performance of M_{ori} . (c) Performance of M_{crop} . (a) Ring area given d. #### Shortcut learning in foundation models Glocker, Ben, et al. "Risk of bias in chest radiography deep learning foundation models." Radiology: Artificial Intelligence 5.6 (2023): e230060. ## Shortcuts in pathology VLMs https://www.medrxiv.org/content/10.1101/2024.12.11.24318840v1 #### Impact of incorrect labels https://www.medrxiv.org/content/10.1101/2024.12.11.24318840v1 #### Attention on Tissue #### Prompt engineering #### Do shortcuts exist in commercial models? Lenskjold, A., Artificial intelligence tools trained on human-labeled data reflect human biases: a case study in a large clinical consecutive knee osteoarthritis cohort. *Sci Rep* **14**, 26782 (2024). JSN A Original DICOM-file. Al-L prediction: KL 0 Flipped DICOM-file. Al-R prediction: KL 3 Lenskjold, A., Artificial intelligence tools trained on human-labeled data reflect human biases: a case study in a large clinical consecutive knee osteoarthritis cohort. Sci Rep 14, 26782 (2024). ## Time-of-Day Patterns of Radiotherapy in Nasopharyngeal Carcinoma #### Radiotherapy Delivery Time treatment treatment #### **Survival Analysis** treatment #### RECAP #### The Lancet Digital Health Available online 11 May 2022 In Press, Corrected Proof ? Articles #### AI recognition of patient race in medical imaging: a modelling study Judy Wawira Gichoya MD ^a $\stackrel{\triangleright}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Imon Banerjee PhD ^c, Ananth Reddy Bhimireddy MS ^a, John L Burns MS ^d, Leo Anthony Celi MD ^{e, g}, Li-Ching Chen BS ^h, Ramon Correa BS ^c, Natalie Dullerud MS ⁱ, Marzyeh Ghassemi PhD ^{e, f}, Shih-Cheng Huang ^j, Po-Chih Kuo PhD ^h, Matthew P Lungren MD ^j, Lyle J Palmer PhD ^{k, I}, Brandon J Price MD ^m, Saptarshi Purkayastha PhD ^d, Ayis T Pyrros MD ⁿ, Lauren Oakden-Rayner MD ^k, Chima Okechukwu MS ^o ... Haoran Zhang MS ⁱ - 1) <u>Performance</u> of deep learning models to detect race from medical images across modalities and external datasets - 2) Assessment of possible anatomic and phenotype <u>confounders</u> such as body habitus and disease distribution - 3) Investigation into underlying mechanisms by which AI models can recognize race. Judy is "Black"/ Kenyan, F, 60 yrs (CXR age = 78 yrs), SDI 45, ICD codes – COPD, CHF, 15,000 USD #### Shortcut learning: A grand challenge - Datasets and labeling - DICOM - Multimodal data approaches - XAI in the context of shortcuts - Task complexity for medical imaging CV - Intersectionality - Opportunistic screening - Real world model performance - Synthetic data - Beyond metrics : FP audits - Domain expertise - Benchmarks - External validation #### AI to the Rescue How artificial intelligence can help stave off a looming health care crisis WAYNE PAGES, PAUL T. MOORE AND JASON REED **NOVEMBER 2020**