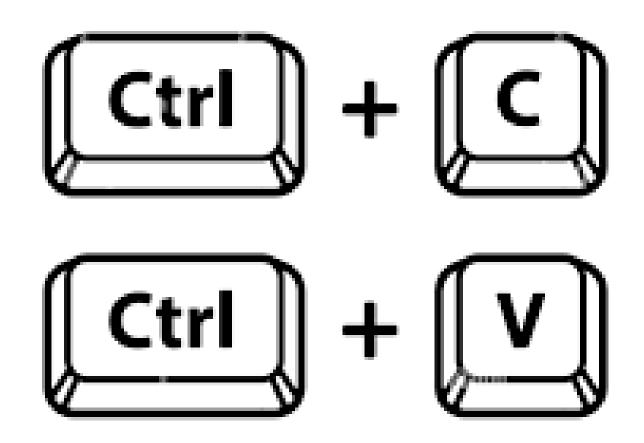
Shortcuts causing bias in medical imaging

Dr. Judy Gichoya
Associate Professor of Radiology and Informatics
Emory University

Disclosures

- RSNA
 - Associate Editor Radiology Al Trainee Editorial Board
 - CIRE & RIC Committee member
- SIIM
 - Co-chair Research Committee
 - Board member
- Advisory council
 - Association for Health Learning and Inference (AHLI)
 - Fairness of AI in medical imaging (FAIMI)
 - AHA Debiasing clinical care algorithms (DECCA)
 - Council of medical specialty societies Encoding Equity Initiative
 - ASCO Al community of practice
 - American College of Radiology Al Advisory Council
- Softbrew LTD
 - Consulting on Global Health/Clinical informatics

- Funding
 - Clairity Consortium
 - NIH AIM-AHEAD consortium development program
 - Harold Amos Faculty Award to study Al bias
 - Lacuna fund for creating diverse medical datasets
 - LUNIT for breast DBT evaluation
 - R01 NHLBI Grant for opportunistic screening for ASCVD using multimodal AI
 - Winship invest cancer disparities pilot grant
- Journal Editorial Boards
 - British Journal of Radiology:Al
 - NEJM AI

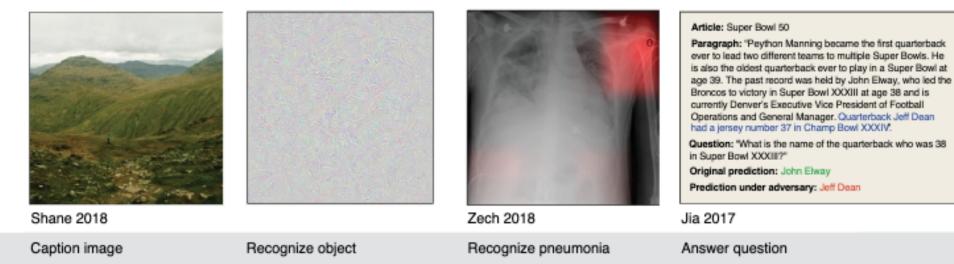


Outline

- Define shortcuts in deep learning
- Describe shortcut examples in various medical images and approaches/strategies for detection and mitigation
- Describe the impact of shortcuts on bias, and how to harness and overcome these biases

Shortcut learning in deep neural networks

Robert Geirhos ^{1,2,4} ^{1,2}, Jörn-Henrik Jacobsen^{3,4}, Claudio Michaelis ^{1,2,4}, Richard Zemel^{3,5}, Wieland Brendel^{1,5}, Matthias Bethge^{1,5} and Felix A. Wichmann ^{1,5}



Task for DNN

Where do shortcuts come from?

Few samples

Many samples

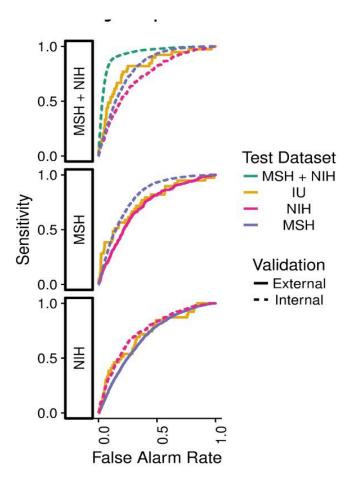
ERM Classifier: f(X) = cow if background is grass; else camel

Spurious Strength: Image → Background → Animal (2 ingredients)

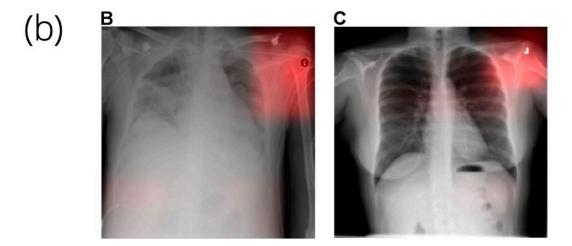
Invariant Strength: Image → Animal

(Informal) ERM learns on the shortcut when spurious strength > invariant strength

Shortcut learning in pneumonia prediction

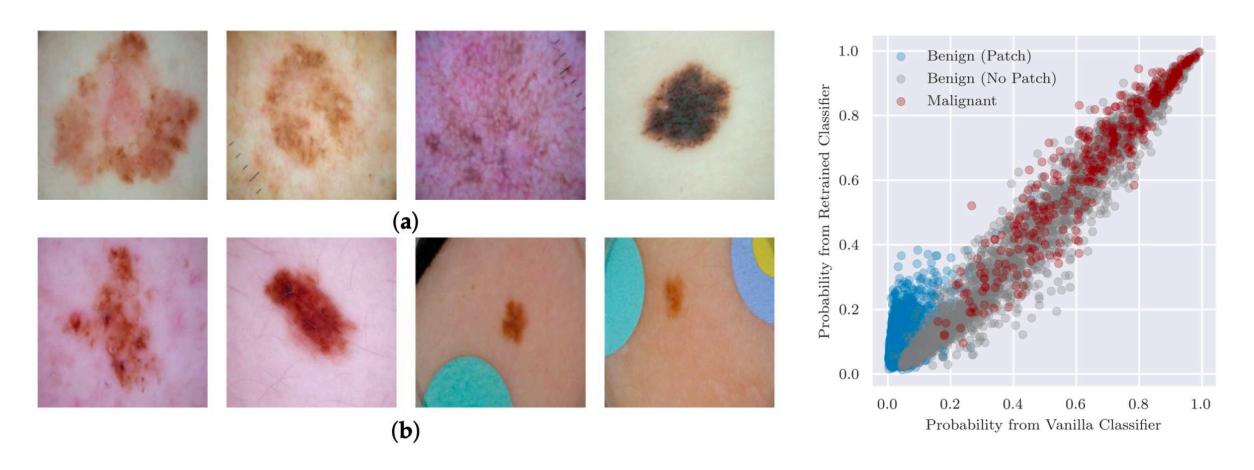


Characteristic	IU	MSH	NIH
Patient demographics			
No. patient radiographs	3,807	42,396	112,120
No. patients	3,683	12,904	30,805
Age, mean (SD), years	49.6 (17.0)	63.2 (16.5)	46.9 (16.6)
No. females (%)	643 (57.3%)	18,993 (44.8%)	48,780 (43.5%)
Image diagnosis frequencies			
Pneumonia, No. (%)	39 (1.0%)	14,515 (34.2%)	1,353 (1.2%)

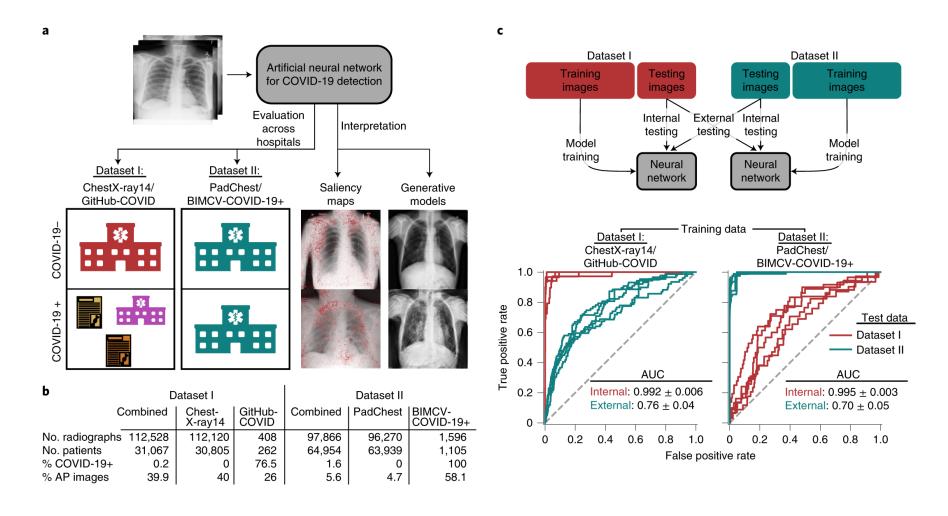


Zech, John R. et al "Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study." PLoS medicine 15, no. 11 (2018): e1002683.

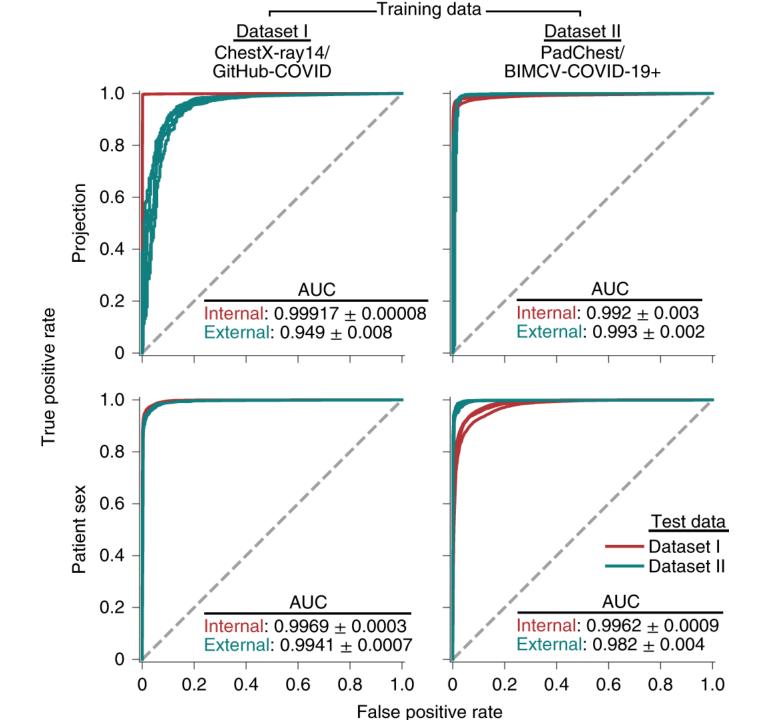
Shortcut learning in dermatology



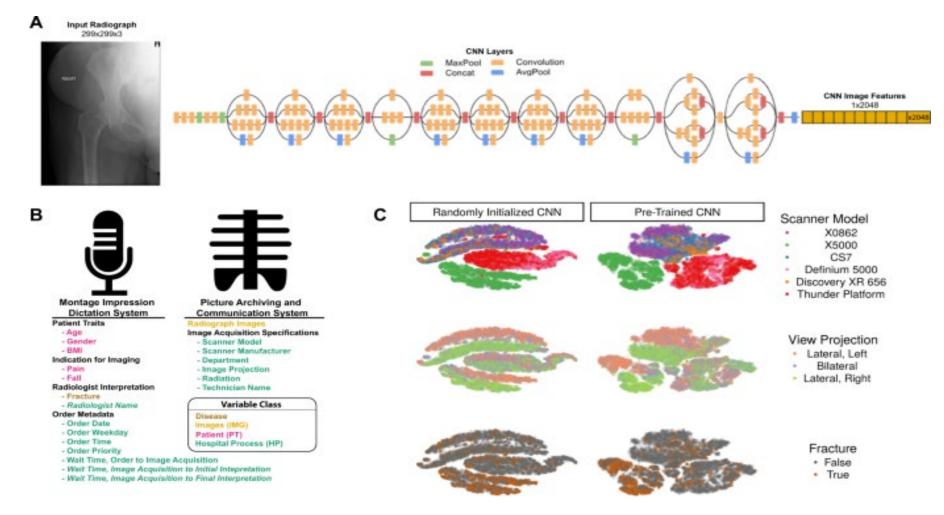
Shortcut learning for COVID-19 prediction



DeGrave, A.J., Janizek, J.D. & Lee, SI. Al for radiographic COVID-19 detection selects shortcuts over signal. Nat Mach Intell 3, 610–619 (2021)

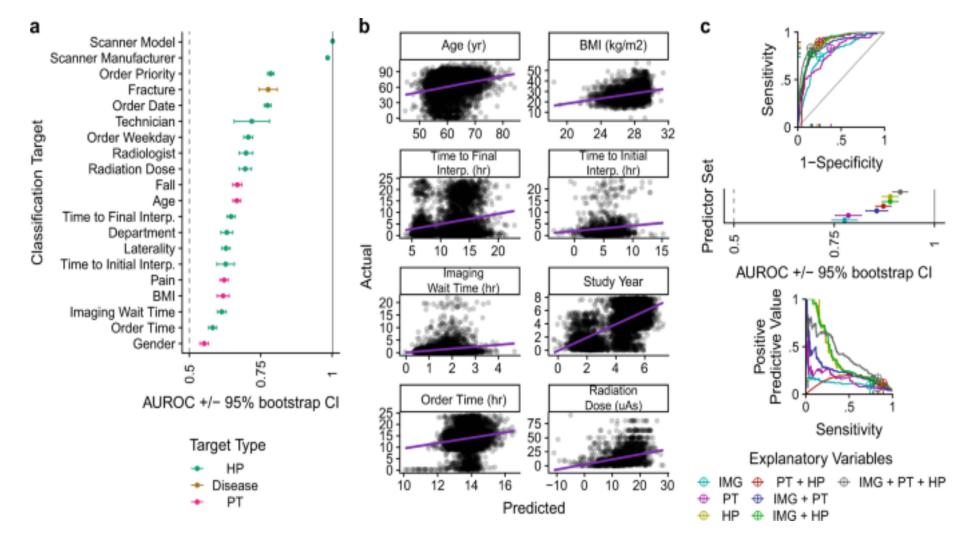


Shortcut learning for hip fracture detection



Badgeley, M.A. L. et al. Deep learning predicts hip fracture using confounding patient and healthcare variables. npj Digit. Med. 2, 31 (2019).

Shortcut learning for hip fracture detection

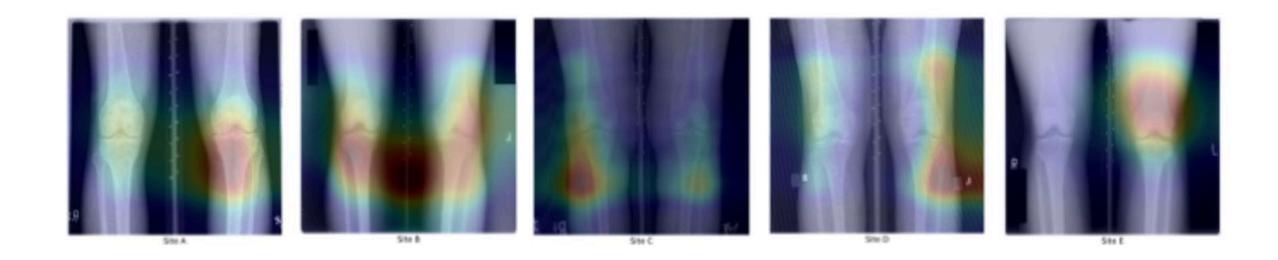


Badgeley, M.A. L. et al. Deep learning predicts hip fracture using confounding patient and healthcare variables. npj Digit. Med. 2, 31 (2019).

Shortcut learning for Medical Image Analysis

Site A	Site C		Þ	Site D	
	Site	Precision	Recall	F1-Score	Support
	A	0.912	0.975	0.943	598
	В	0.995	0.999	0.997	771
	C	0.998	0.998	0.998	1,267
	D	0.998	0.996	0.997	990
	E	0.939	0.805	0.867	287
	Macro Avg	0.969	0.954	0.960	3,913
	Weighted Avg	0.980	0.980	0.979	3,913
है न	[3		1000		

Shortcut learning for Medical Image Analysis



Shortcut learning in segmentation models

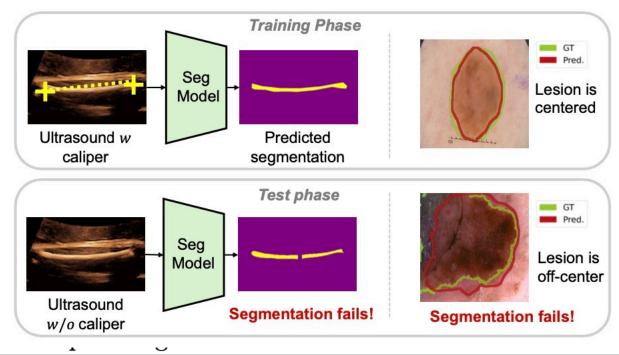
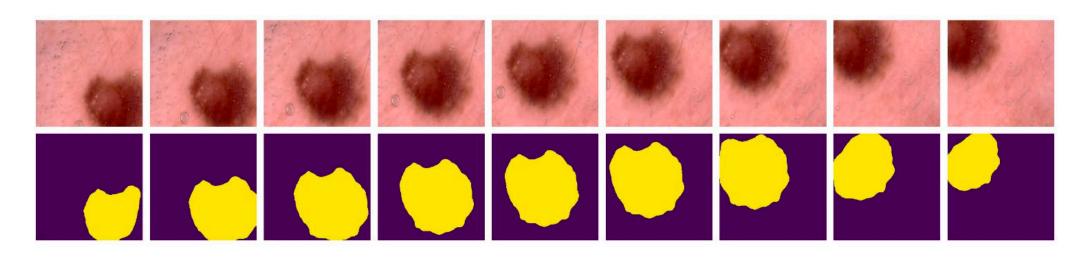
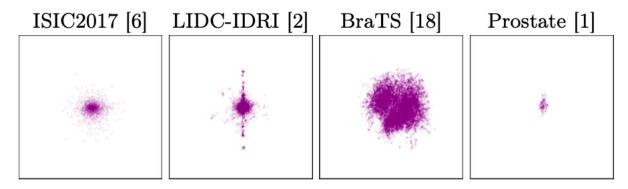


Image	Anatomical plane					
image	Head	Abdomen	Femur	Cervix		
Test set w annotation	76.97 ± 5.10	82.06 ± 6.60	93.82 ± 1.79	76.29 ± 4.05		
Test set w/o annotation	70.85 ± 8.24	78.85 ± 7.72	91.84 ± 4.87	71.81 ± 4.86		

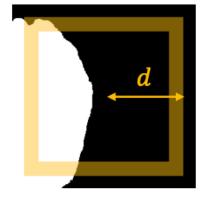
Shortcut learning in segmentation models



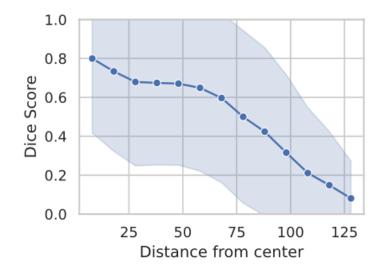


Lin, Manxi, et al. "Shortcut Learning in Medical Image Segmentation." *arXiv* preprint arXiv:2403.06748 (2024).

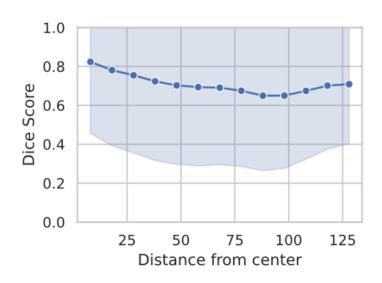
Shortcut learning in segmentation models



d: distance from the outer ring to the centre of the mask



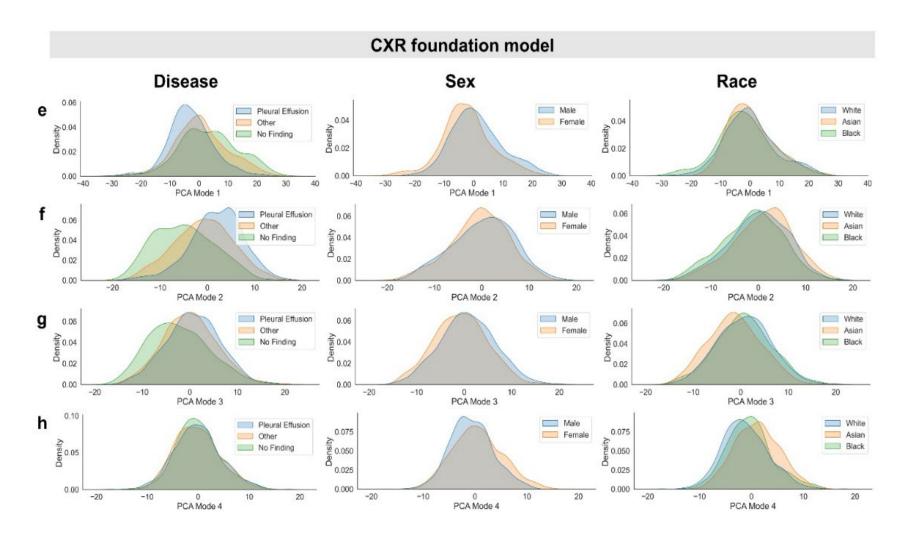
(b) Performance of M_{ori} .



(c) Performance of M_{crop} .

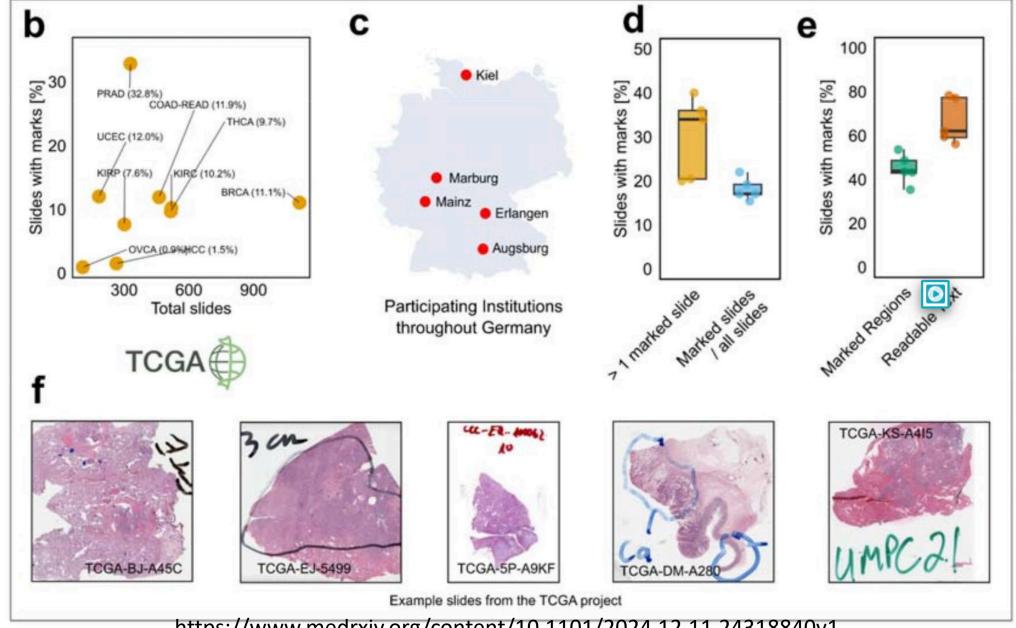
(a) Ring area given d.

Shortcut learning in foundation models



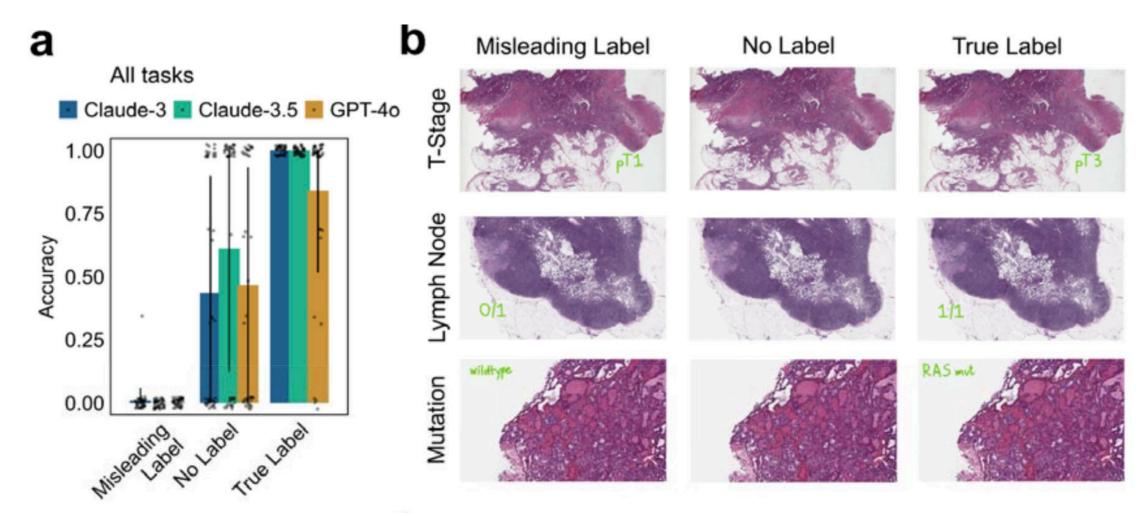
Glocker, Ben, et al. "Risk of bias in chest radiography deep learning foundation models." Radiology: Artificial Intelligence 5.6 (2023): e230060.

Shortcuts in pathology VLMs



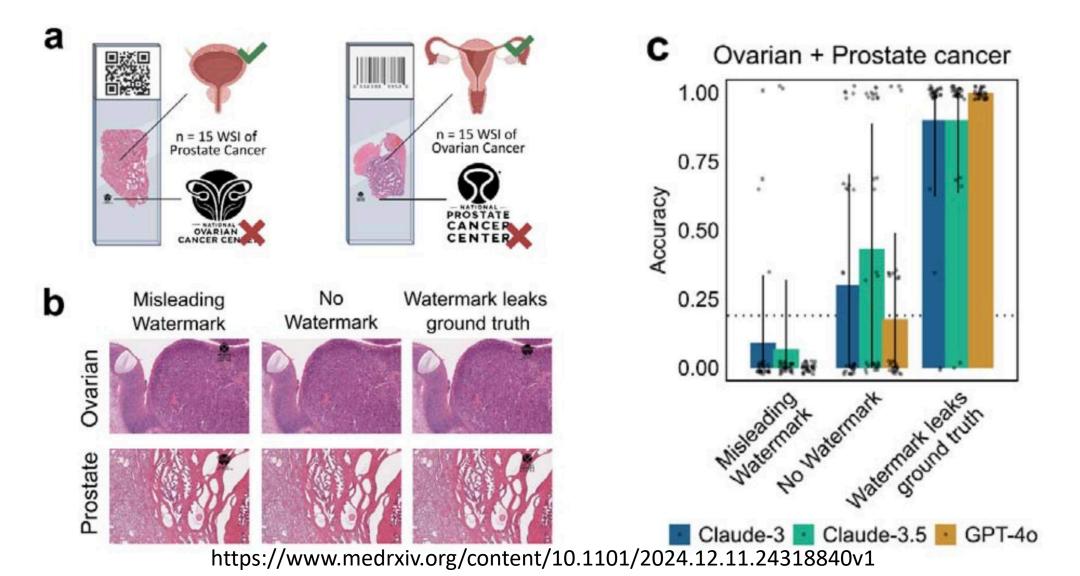
https://www.medrxiv.org/content/10.1101/2024.12.11.24318840v1

Impact of incorrect labels

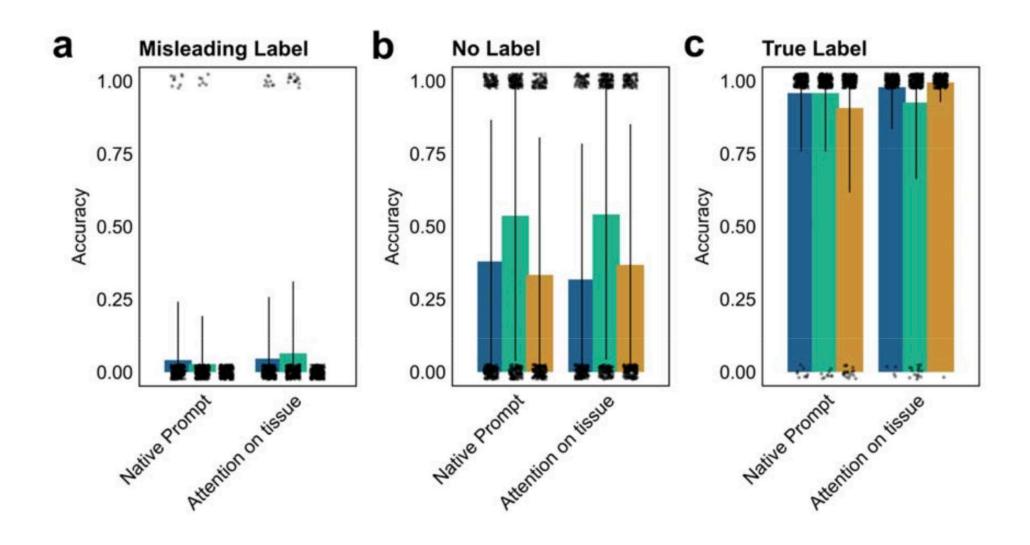


https://www.medrxiv.org/content/10.1101/2024.12.11.24318840v1

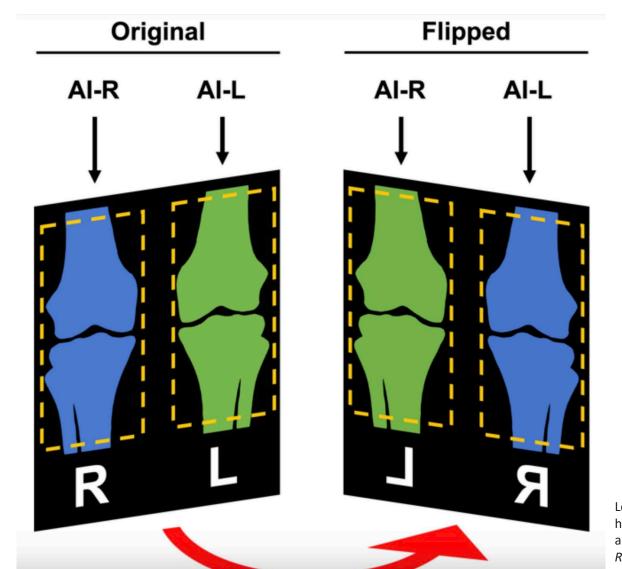
Attention on Tissue



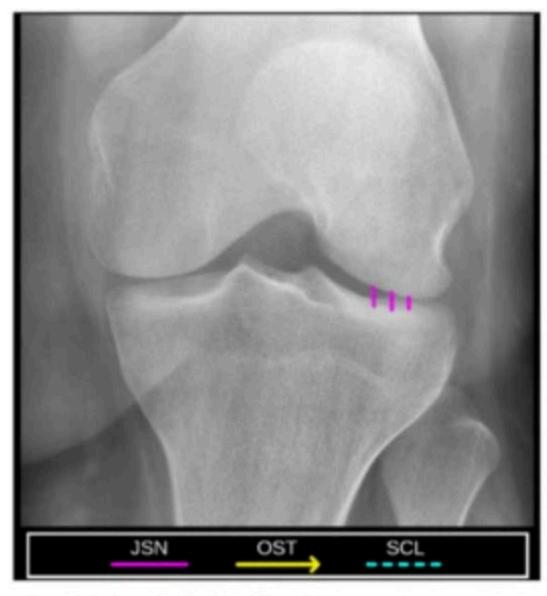
Prompt engineering



Do shortcuts exist in commercial models?



Lenskjold, A., Artificial intelligence tools trained on human-labeled data reflect human biases: a case study in a large clinical consecutive knee osteoarthritis cohort. *Sci Rep* **14**, 26782 (2024).



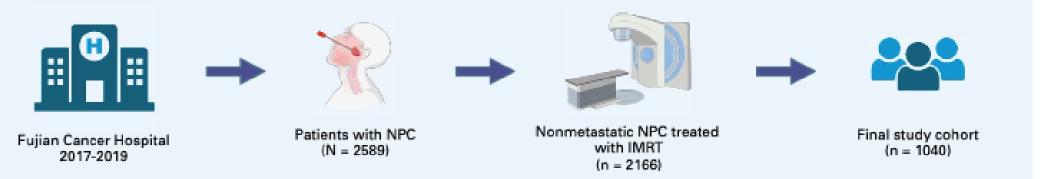
JSN

A Original DICOM-file. Al-L prediction: KL 0

Flipped DICOM-file. Al-R prediction: KL 3

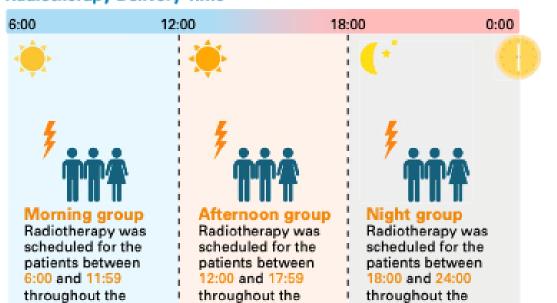
Lenskjold, A., Artificial intelligence tools trained on human-labeled data reflect human biases: a case study in a large clinical consecutive knee osteoarthritis cohort. Sci Rep 14, 26782 (2024).

Time-of-Day Patterns of Radiotherapy in Nasopharyngeal Carcinoma



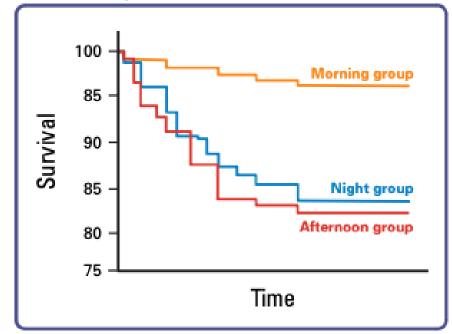
Radiotherapy Delivery Time

treatment



treatment

Survival Analysis



treatment

RECAP

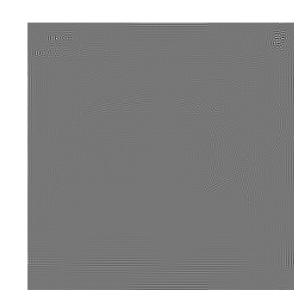
The Lancet Digital Health

Available online 11 May 2022 In Press, Corrected Proof ?

Articles

AI recognition of patient race in medical imaging: a modelling study

Judy Wawira Gichoya MD ^a $\stackrel{\triangleright}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Imon Banerjee PhD ^c, Ananth Reddy Bhimireddy MS ^a, John L Burns MS ^d, Leo Anthony Celi MD ^{e, g}, Li-Ching Chen BS ^h, Ramon Correa BS ^c, Natalie Dullerud MS ⁱ, Marzyeh Ghassemi PhD ^{e, f}, Shih-Cheng Huang ^j, Po-Chih Kuo PhD ^h, Matthew P Lungren MD ^j, Lyle J Palmer PhD ^{k, I}, Brandon J Price MD ^m, Saptarshi Purkayastha PhD ^d, Ayis T Pyrros MD ⁿ, Lauren Oakden-Rayner MD ^k, Chima Okechukwu MS ^o ... Haoran Zhang MS ⁱ



- 1) <u>Performance</u> of deep learning models to detect race from medical images across modalities and external datasets
- 2) Assessment of possible anatomic and phenotype <u>confounders</u> such as body habitus and disease distribution
- 3) Investigation into underlying mechanisms by which AI models can recognize race.

Judy is "Black"/ Kenyan, F, 60 yrs (CXR age = 78 yrs), SDI 45, ICD codes – COPD, CHF, 15,000 USD

Shortcut learning: A grand challenge

- Datasets and labeling
 - DICOM
- Multimodal data approaches
- XAI in the context of shortcuts
- Task complexity for medical imaging CV
- Intersectionality
- Opportunistic screening
- Real world model performance
- Synthetic data
- Beyond metrics : FP audits
- Domain expertise
- Benchmarks
- External validation

AI to the Rescue

How artificial intelligence can help stave off a looming health care crisis

WAYNE PAGES, PAUL T. MOORE AND JASON REED

NOVEMBER 2020

