IOM 26 Feb 2010 FDA Centers of Excellence for Regulatory Science

Allen D Roses Deane Drug Discovery Institute Duke University

What is needed in regulatory [genomic] science?

Defined as "to enhance product development" by:

- 1) Minimizing likelihood for imperfect data (IND)
- 2) Analyzing and interpreting data in regulatory submissions (NDA, BLA)
 - * Consider all products of the genome
 - * Consider all genomes
 - * Integrative biology
 - * Constructive pharmacology
 - * Translational analyses

Pharmacogenetics and Outcome Studies: FDA Division Reviewer Issues

- Retrospective vs. prospective
- Efficacy vs. safety
- Agnostic vs. hypothesis-driven
- Clinical validity + epidemiological strength
 - Stats and magnitude
 - Replication
 - Biological gradient
 - Biologically plausible
 - Supported by analogy and cohesion
- Experimentally supported

FDA Science and Mission at Risk, 2007

- The FDA Science Board review of Science and Technology at FDA found that the FDA mission was at risk for the following key reasons:
 - The FDA scientific base has eroded and its scientific organizational structure is weak at a time when there have been major scientific advances and when new products and technologies under the regulatory authority are more scientifically complex.
 - The FDA scientific workforce does not have sufficient capacity and capability.
 - The FDA information technology (IT) infrastructure to support the scientific base is inadequate.

Regulatory authority of new products and technologies are more scientifically complex.

- IT infrastructure can be improved \$\$\$\$
 Technologies can be bought if necessary \$\$
 Scientific expertise needs to be readily available to FDA Review Teams: \$\$
 - Safety urgently requires a sane and accurate system
 - Efficacy no longer "one shoe fits all"
 - Efficacy Pharmacogenetics In cancer, but beginning in other complex diseases
- Regulatory science depends on genetic diagnostics, with clearly defined clinical parameters, reproducible methodologies, and an over-riding concern for safety and efficacy of products
- It is not exploratory discovery or methods development

FDA Centers of Excellence: "Genomics" or "Genetics"

- Example: Differences between genomic associations and individual diagnostics
 - Much attention and academic publication concerns genomewide associations. GWAS was developed initially [SNP Consortium 1998] to localize disease gene locations across the genome
 - BUT NO ONE INHERITS a DOUBLE STRANDED DNA BLOCK of DNA
 - Every individual inherits a single strand from each parent
 - Current technology and academic publications emphasize associations – not individuals
 - Regulatory science focuses on the individuals genetics for predictive data, not the genome association structures

Vaccines: A clear clinical victory for products based on "last-generation" sequencing

- Both annual flu vaccines and HIV mutations affecting drug response are two well-established examples
- Mutations in flu virus sequence are found by sequencing laboratories that are testing isolates throughout the world every year: these are used for vaccine production
- The analyses are known as phylogenetic mapping with well established technologies for accurate "diagnosis" of new sequence mutations
- The application of phylogenetic mapping is not a population screening exercise but is defined by mutation analyses of DNA strands at specific sites.

AD - two biologically interactive relevant genes in LD APOE isoforms and tomm40 channels GWAS: 3 of the top 4 SNPs are TOMM40

SNP	Gene [closest RefSeq]	Location	P value
rs2075650	TOMM40	Intron	1.8E -157
rs157580	TOMM40	Intron	9.6E -54
rs6859	PVRL2	3' UTR	6.9E -41
rs106922	TOMM40	Intron	5.4E -39
rs405508	ΑΡΟΕ	5' non-coding	4.9E- 37
rs11136000	CLU	Intron	1.2E -9
rs3851179	PICAM	5′	1.9E -8

Regions Studied for Phylogenetic Analysis

SNP and structural variants are prevalent in regions of the *TOMM40* gene

Phylogenetic Analysis of 10Kb Region of TOMM40 – uses all the individual strand sequence variants

Comparison of Arizona and Canada series

All AD patients, all APOE3 and APOE4 alleles, Arizona cohort N = 65 p < 0.03

Hypothetical "523" age of onset distribution

Accuracy for 523 with APOE3 equivalent to that accepted for APOE4/4

FDA Voluntary Exploratory Data Submission concluded on 7 October 2009

Conclusions

- FDA VxDS works here were data addressed for regulatory purposes for a year before publication, and ?? years before academic acceptance
- The FDA needs to be able to contract for timely regulatory sciences, and thus have the expertise for due diligence and an efficient support mechanism.
- The structure of academic FDA-supported Centers should not duplicate NIH Translational Centers, but be directly and efficiently responsive to the needs of the FDA reviewers, regulatory emergencies, and the mission of safety and efficacy.
- The FDA's mission is not that of the NIH by statute.