

Items typically left out of many reprocessing cost calculations (incomplete list)

- Multiple years to come to full operation (increases IDC)
- Decommissioning costs (proving to be larger than expected)
- Plutonium storage costs, americium separation costs
- Realistic financing rates (different from discount rate for setting aside assured funds for future costs)
- Reprocessing plants typically operate well below capacity
 Lack of demand and technical problems
- Reprocessing plants generate large volumes of low-level and intermediate-level waste

- Decommissioning waste volumes may be large, usually ignored

Intermediate-level includes TRU-contaminated, requires deep geologic disposal

International experience of reprocessing cost: THORP

Thermal Oxide Reprocessing Plant (THORP), U.K.

- Built 1985-1994 financed with pay-ahead contracts
- Capital cost: £3.07B (1991 BNFL estimate), \$7.1B 2014\$
- Operating cost: BNFL early estimate \$546M (2014\$)
- Billions in refurbishment, repairs
- Rapidly escalating estimates of Sellafield decommissioning costs
- Never performed to expectations; shut-down for years after 2005 leak of plutonium-laden acid into basement holding cell
- Unable to get additional contracts (dry cask storage cheaper)
- Planned to shut down once existing contracts completed
- BNFL bankrupt, facility owned by National Decommissioning Authority

Comparing reprocessing to dry cask storage: high and low estimates

Plant	Capital cost	Operating cost	40-year cost (no financing)	40-year dry storage cost	
200 tHM/yr, Low	\$3.20 B	\$0.19 B	\$10.80 B	\$1.60 B	
200 tHM/yr, High	\$5.70 B	\$0.34 B	\$19.30 B	\$1.60 B	
800 tHM/yr, Low	\$8.00 B	\$0.48 B	\$27.20 B	\$6.40 B	
800 tHM/yr High	\$20.00 B	\$1.50 B	\$80.00 B	\$6.40 B	

□ Even without financing costs:

 Even if low estimate proved correct, and 800 tHM/yr plant operated at full capacity throughout 40-year life, China would save over \$20B by simply storing the same fuel in dry casks for that period

->\$9B 40-year savings for low estimate of 200 tHM/yr plant

Per-kilogram reprocessing costs: high and low estimates: 200 tHM/yr plant

Plant	Capital Cost	IDC	Decom.	Capital+ IDC+ Decom.	FCR	Capital Charge/ kg	Operating (annual)	Operating (per kg)	Total cost/ kg
200 tHM/yr Low 0%	\$3.2B	0	.04	\$3.3B	0.025	\$520	\$190 M	\$1,200	\$1,700
200 tHM/yr Low 3%	\$3.2B	0.19	.04	\$4.0B	0.043	\$1,070	\$190 M	\$1,200	\$2,300
200 tHM/yr Low 6%	\$3.2B	0.42	.04	\$4.7B	0.066	\$1,950	\$190 M	\$1,200	\$3,100
200 tHM/yr High 0%	\$5.7B	0	.04	\$5.9B	0.025	\$930	\$340 M	\$2,140	\$3,100
200 tHM/yr High 3%	\$5.7B	0.19	.04	\$7.0B	0.043	\$1,906	\$340 M	\$2,140	\$4,000
200 tHM/yr High 6%	\$5.7B	0.42	.04	\$8.4B	0.066	\$3,469	\$340 M	\$2,140	\$5,600

By comparison, cost of 40-year storage plus direct disposal in range of \$900/kgHM (with generous disposal costs) – disposal of HLW will add to reprocessing cost

Plant	Capital Cost	IDC	Decom.	Capital+ IDC+ Decom.	FCR	Capital Charge/ kg	Operating (annual)	Operating (per kg)	Total cost/ kg				
800 tHM/yr Low 0%	\$8B	0	.04	\$8.4B	0.025	\$330	\$480 M	\$750	\$1,100				
800 tHM/yr Low 3%	\$8B	0.19	.04	\$9.9B	0.043	\$670	\$480 M	\$750	\$1,400				
800 tHM/yr Low 6%	\$8B	0.42	.04	\$11.7B	0.066	\$1,220	\$480 M	\$750	\$2,000				
800 tHM/yr High 0%	\$20B	0	.04	\$20.8B	0.025	\$810	\$1.5 B	\$2,340	\$3,200				
800 tHM/yr High 3%	\$20B	0.19	.04	\$24.7B	0.043	\$1,670	\$1.5 B	\$2,340	\$4,000				
800 tHM/yr High 6%	\$20B	0.42	.04	\$29.3B	0.066	\$3,040	\$1.5 B	\$2,340	\$5,400				

•

. .

31

. ..

China has the luxury of time

- Enough U to fuel even aggressive nuclear growth
- Dry cask storage provides safe, secure, low-cost approach, leaves all options open for the future
- Postponing allows time for technology to develop, interest on funds to accumulate, security, political, and economic issues to clarify
- Selected recommendations
 - Undertake comprehensive review of options including all factors
 - Invest in dry cask storage useful for all fuel cycle options
 - Ensure potential proliferation impact fully considered
 - Design in high levels of safety and security from the outset
 - Avoid accumulating separated plutonium
 - Pursue R&D on fuel cycle technologies