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Integrating Mechanistic and ML Models 
 Mathematical modeling in radiation biology/oncology has a long history (e.g. LQ model).
 Such models are based on diverse data sources: animal, in vitro, human clinical data.
 However, these models are simple and cannot include multiple relevant features: patient 
demographics, treatment and disease details, omics and imaging.
 In contrast, ML methods can integrate multiple features and modalities, generate accurate 
predictions, but are not as easy to interpret (“black box”).
 It makes sense to integrate these two approaches together to make more accurate 
and interpretable models: concepts from simple models, like Biologically Effective Dose 
(BED), can enter into ML models as engineered features.
 This integration improves interpretability of ML models and can guide clinically actionable 
insights.
 By incorporating mechanistic elements, ML models can also benefit from a broader 
knowledge base, not limited to just the current dataset (especially if that dataset is 
small/limited).
 Here we present an example of integrating mechanistic and ML models on tabular clinical 
data, and our future plan is to extend this to multi-modal analysis incorporating image data.
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Example: Modeling Tumor Repopulation in HNSCC
 Tumor repopulation is known to be a strong factor in HNSCC radiotherapy outcome.
 Shortening the radiotherapy helps to reduce the effect of repopulation because there is 
less time for tumor cells to proliferate, while gaps in treatment have the opposite effect.
 This was recognized a long time ago, leading to a model called the Withers “hockey 
stick”. In this model, accelerated repopulation (AR) is assumed to start at a fixed time 
(Tk) after RT begins, and AR rate is assumed to be 
independent cell killing intensity. Withers et al. Acta 

Oncol. 
1988;27(2):131-46This can be called the Dose-Independent (DI) 

model.
Our team was thinking how to improve this:
• Since AR is likely a compensatory response to cell 

killing, the onset and rate of AR may depend on the 
“intensity” of cell killing during treatment. 

 This is the rationale for a “Dose-Dependent (DD)” 
model.
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Applying DI and DD Models to HNSCC Data
First, we fitted them to RT-only arms of older clinical trials (aggregated data).
Then, we used them on a modern large dataset (RADCURE) on 2,651 patients with 

HNSCC with comprehensive radiotherapy, chemotherapy, clinical variables, and 
long-term cause of death data, from PMH in Toronto, Canada. 

 In the RADCURE analysis we used a two-step approach that combines mechanistic 
modeling concepts with ML: Random Survival Forests (RSF) for an exploratory 
analysis followed by Causal Survival Forests (CSF) for a focused causal analysis. 
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BED for DI and DD Models
 BED consists of a cell killing term (LQ model) and a repopulation term.
DD model specifics:

• Killing term is the same as in DI model
• Repopulation term differs:
 AR starts when −ln(cell surviving fraction) decreases below a constant −C
 AR rate is proportional to the average fraction of cells killed per day

Simplification assumption:
• Assume BEDDD = BEDI for standard RT of 35 x 2 Gy over 7 weeks
• This helps calculate C, eliminating it as a free parameter and simplifying the 

model
Parameters and their meanings (plausible values):

α = 0.2 Gy−1: Cell sensitivity to radiation (linear term)
α/β = 10 Gy: Ratio of L/Q cell sensitivity parameters
λDI = 0.2 days−1: Fixed AR rate for DI model
λDD = 0.5 days−1: Maximum AR rate for DD model
Tk = 28 days: Fixed AR onset time for DI model
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Simple Website 
Implementation 

of DI and DD 
BEDs

We implemented 
these BED 
formulas in a 
simple website 
application using 
GitHub and Shiny 
R package: 
https://ishuryak.shi
nyapps.io/custom_
bed_calculator/

• In this example, 
“standard” fractionation 
was used, but the 
treatment time was 
extended by 5 days as 
an “unplanned” event.

• It shows that the BED 
values for the DI and 
DD models are not the 
same in such scenarios 
due to different handling 
of repopulation. 
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Behaviors on RADCURE data
 In a simple Cox regression model, BEDDD (but not BEDDI) was a significant predictor of 

overall survival.



 In a more complex (but flexible) random survival forest (RSF) model on the 
same data, both BEDDI and BEDDD were associated with reduced mortality. 

BEDDD had a more monotonic effect.



SHAP values for the RSF model for many features

Of course, these are predictive (not causal) models.
The patterns can be affected by confounding.
Next step – causal ML models.
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Causal Machine Learning (CML)
Using ML to study causal effects seems counterintuitive, since ML is commonly 
used for predictive tasks which operate with correlations/associations – and 
correlation and causation are conceptually different
However, causal ML techniques exist, and this field is evolving rapidly because 
exploring causality is scientifically important
 Key advantages of causal ML (CML):
 For personalized medicine, it is important to study heterogeneous treatment effects (i.e. 

how do the treatment effects vary by disease details, mutations, patient demographics) 
to identify which patients / subgroups benefit most / least from a particular treatment

 Unlike correlations, causal effects can better translate to other data sets where the data 
distributions and correlation structures can be different

 Observational clinical data (which are much more widely available than RCTs) can 
potentially provide causal insights about treatment effects using CML – not as reliable 
as RCTs of course, but more reliable than predictive modeling techniques

 CML can also be useful for clinical trials data to identify subgroups whose response to 
the treatment may differ strongly (even in sign) from the average population’s 
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• In predictive tasks, there are two types of 
variables: inputs (X, features, predictors) and 
outputs (Y, outcomes, targets). 

• In contrast, in the causal framework, the cause 
(often called treatment, T) is conceptually distinct 
from other features (X).

• So, causal tasks involve three types of variables: 
inputs (X), interventions (T, which represent the 
treatment / causal variable), and outputs (Y). 

• In CML methods described below, we operate 
under specific assumptions derived from domain 
knowledge: 
 X can cause T, both X and T together can 

cause Y, and importantly, T does not cause X. 
 Main assumptions:
 No unmeasured confounding/ignorability =  all 

variables that influence both the treatment and the 
outcome are observed and accounted for.

 Overlap/common support/positivity = every 
individual has a positive probability of receiving 
each treatment level.

X 
(many features, 

including 
potential 

confounders)

Y 
(outcome, like 
tumor control 

or toxicity)

T 
(treatment or 

causal variable, 
like radiation 
dose or BED)

This is the causal 
effect of interest 

Our main objective is to quantify 
the causal effect of T on Y. 
Meanwhile, the effects of X on T 
and X on Y can be treated as 
“nuisance parameters”.
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Double Debiased Machine Learning (DML)
 DML (V. Chernozhukov et al., https://arxiv.org/abs/1608.00060) involves the 
following steps:
 Model the treatment (T) based on the covariates (X), 

using any ML method. This is a “de-confounding” 
operation.

 Model the outcome (Y) based on the covariates (X),  
using any ML method, but ignore the treatment. This is for 
“de-biasing/de-noising”.

 Build a third model to relate the residuals from the first 
two models to each other – this relationship is 
interpreted as the causal effect. Also include X in this 
model.

 In place of unknown true treatment effects, this method 
involves using differences between observed and ML-
predicted values for “nuisance functions”: dependences of 
T and Y on X. This is used to achieve “orthogonality”, 
reducing sensitivity to nuisance functions.

• DML is doubly robust: it can 
provide reliable causal effect 
estimates if either the treatment 
our outcome model (but not 
necessarily both) is correctly 
specified. 

• In practice, the nuisance 
function models need to be 
reasonably accurate but not 
perfect, and can be generated 
using any ML method, provided 
cross-fitting is used.

https://arxiv.org/abs/1608.00060


Causal Forest (CF) 
• https://grf-labs.github.io/grf/reference/causal_forest.html 
• Athey, Susan, Julie Tibshirani, and Stefan Wager. "Generalized Random Forests". Annals of Statistics, 47(2), 2019.

https://grf-labs.github.io/grf/reference/causal_forest.html


Estimands: Survival probability (SP) or Restricted Mean Survival Time (RMST). SP 
= "vertical" difference in survival probabilities between treated and untreated groups 
at a specific time (horizon). RMST = "integral" of the SP difference from time zero 
up to the horizon time.

Using CML on Survival Data Like RADCURE
Here the outcome is overall survival, so we used the causal survival forest (CSF) – 
a CF variant which uses censoring-robust estimating equations.
CSF incorporates models for the treatment propensity score, for the censoring 
probability, and for the survival time.
 It assumes that the censoring process is random, conditional on the covariates.
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Causal analyses on RADCURE suggested that high BEDDD or BEDDI increased patient restricted 
mean survival time (RMST) by 0.5-1.0 years and increased survival probability (SP) by 5-15% 
several years after treatment.
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Causal ML Analysis for Chemotherapy

About 37% of patients received chemotherapy. 
 Its effect is evident even in a “naïve” univariate KM 

curve comparison. 
We used CSF to estimate the chemotherapy effect 

more rigorously in a causal framework, considering 
other variables.

Elastic net regression was used for propensity score 
prediction. 

Patients with propensity scores <0.1 or >0.9 (those 
very unlikely or very likely to get chemotherapy) were 
dropped from analysis to generate stable causal effect 
estimates.

 The propensity scores varied by tumor site.
 They tended to increase with tumor Stage and 

radiotherapy BED, and to decrease with Age.

With chemotherapy

No chemotherapy

Chemotherapy 
propensity score 

histogram



Summary statistics for some 
variables of interest

Distribution of chemotherapy by 
age and stage
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Age Sex 
(0=F, 
1=M)

Stage Chemo 
(0=NO, 
1=YES)

Min 22.30 0 0 0
Max 90.00 1 4 1
Mean 63.49 0.81 3.21 0.37
Median 63.10 1 4 0
25% 55.90 1 2 0
75% 70.80 1 4 1
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CSF results: chemotherapy increased survival probability by 15.2 ± 6.0% at 3 years and 
15.0 ± 6.7% at 5 years on the testing set. 
RMST improved by 3.6 ± 1.4 months at 3 years and 7.1 ± 2.6 months at 5 years. 
Considerable heterogeneity between patients is seen in the histograms. 

SP                   RMST
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Future Directions: Incorporating Image Data

The RADCURE data set also contains CT images and radiomics features 
extracted from them.

Combining the tabular clinical data and image features into a more powerful 
analysis seems very promising for our team: several members have image 
analysis expertise.



Conclusions
• We combined simple mechanistic mathematical modeling concepts with predictive 

and causal ML methods to investigate the effects of radiotherapy and 
chemotherapy on HNSCC patient survival in the large RADCURE data set.

• High BEDDD or BEDDI, and chemotherapy, significantly increased RMST and 
survival probability several years after treatment. The magnitudes of these causal 
effects varied substantially between patients.

• These findings are in line with current knowledge, but chemotherapy effect 
estimates are larger than in published meta-analyses, possibly due to the tendency 
for younger/healthier patients to receive chemotherapy more frequently, other 
population differences, incomplete fulfillment of causal modeling assumptions, and 
evolving treatment protocols. 

• This study presents an example of implementing the concept of incorporating 
mechanistic modeling insights into ML analyses of cancer treatment data.

• We think that this type of approach has a lot of potential for enhancing knowledge 
about treatment effects from non-randomized clinical data to complement RCT 
analyses, generate new hypotheses, and support personalized medicine.



Thank you very much for your interest!

My email is: is144@cumc.columbia.edu
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