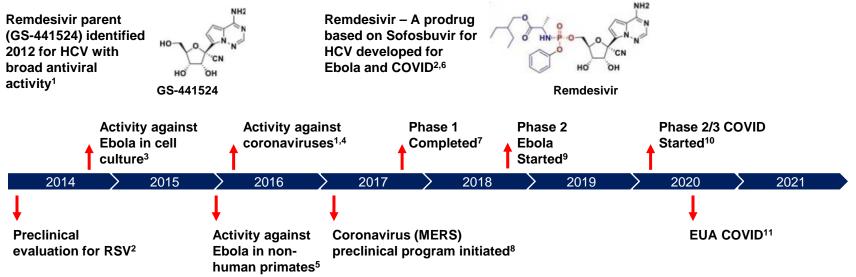
BILL& MELINDA GATES foundation

PANDEMIC PREPAREDNESS: ACCELERATING THE DISCOVERY OF NEW THERAPEUTICS

NASEM Webinar


January 10, 2023

Ken Duncan Deputy Director, Discovery & Translational Sciences, Global Health

TOPICS TO BE COVERED

- 1. COVID-19: What did we learn?
- 2. Preparing for future pandemics: What tools do we need?
- 3. Defining the desired product
- 4. Multidisciplinary approach to drug discovery
- 5. Role of partnerships

REPURPOSING FOR COVID: REMDESIVIR

- Nucleoside analogs can have broad spectrum antiviral activity and a high barrier to resistance, however...
 - Poor metabolism to the active triphosphate in tissues requires prodrug strategies to improve pharmacokinetics and efficacy
 - Off-target inhibition of cellular enzymes raises potential safety liabilities
- Lack of efficacy for Ebola halted program but clinical data allowed for quick repurposing for SARS-CoV-2

¹Cho et al., 2012, (PMID: 22446091); ²Mackman RL, 2022, (PMID: 35291757); ³Lo MK et al., 2017, (PMID: 2826269); ⁴Sheahan TP et al., 2017 (PMID: 28659436); ⁵Warren TK et al., 2016 (PMID: 26934220); ⁵Seigel D et al., 2017, (PMID: 28124907); ⁷Gilead press release; (7.1) Humeniuk R et al., 2020 (PMID: 32054787); ³Muaingu S et al., 2019 (PMID: 32054787); ³Muaingu S et al., 2017 (PMID: 32054787); ³Muaingu S et al., 2017 (PMID: 32054787); ³Muaingu S et al., 2017 (PMID: 32054787); ³Muaingu S et al., 2019 (PMID: 32054787); ³Muaingu S et al., 2019 (PMID: 32054787); ³Muaingu S et al., 2019 (PMID: 32054787); ³Mua

RESPONSE TO COVID-19

Could existing oral drugs be used to treat COVID-19?

Calibr

at Scripps Research

Screening ReFRAME

- 25 screens conducted by multiple research teams
- No <u>antiviral</u> candidates identified that met the desired Target Product Profile (oral agent)

www.reframedb.org

BILL& MELINDA GATES foundation

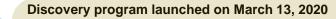
wellcome

- \$298M from core funders + 16 additional donors
- Supporting efforts to research, develop and bring effective treatments against COVID-19 to market quickly and accessibly
 - Discovery, Clinical Trials, Real World Evidence, Manufacturing Capacity, Diagnostics

www.therapeuticsaccelerator.org

markers

- €78.5M over five years
- 37 research institutions and pharmaceutical companies

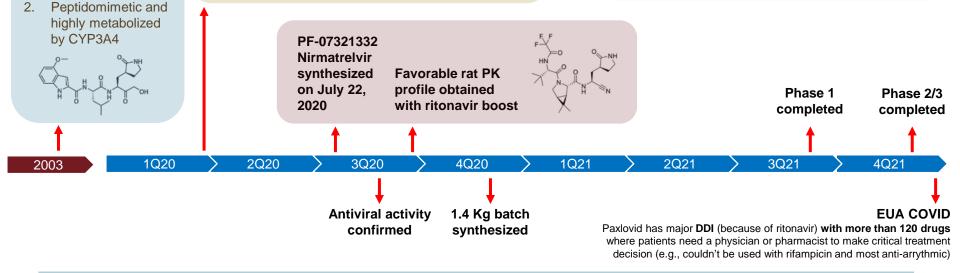

www.imi-care.eu

NEW DRUG DISCOVERY: NIRMATRELVIR

SARS-CoV-1 Mpro inhibitor PF-00835231 was identified in 2003

But:

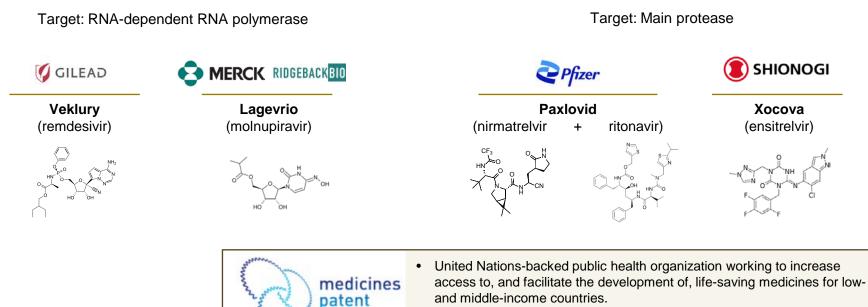
1. Not absorbed and dosed IV



Goal – quickly optimize PF-00835231 to deliver an oral drug by:

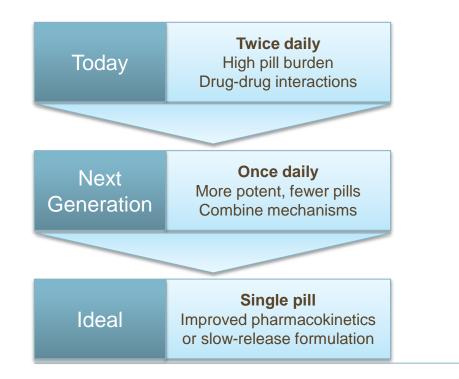
- Reducing hydrogen bond donor from 5 to 3 to increase oral bioavailability
- 2. Addressing rapid metabolism in liver by combining with Cyp3A4 inhibitor

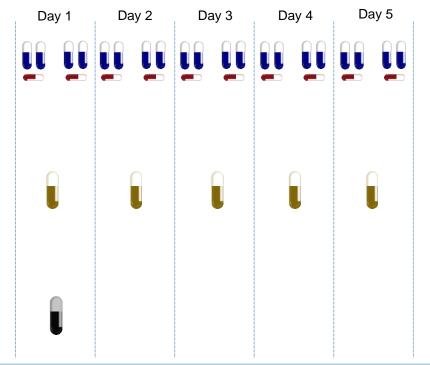
Outcome – development of Paxlovid, a combination of nirmatrelvir and ritonavir


Ritonavir was originally developed as an anti-HIV drug. It has no activity against SARS-CoV-2 but is a potent inhibitor of human Cyp3A4. Thus ritonavir "boosts" the level of nirmatrelvir available to inhibit the virus without having to design a drug with reduced clearance.

CURRENT SITUATION: REGISTERED COVID ANTIVIRALS

Encouraging progress but options remain limited and not well suited to low- and middle-income countries


pool


 Molnupiravir, nirmatrelvir, and ensitrelvir have been licensed to MPP and sub-licenses issued to multiple generic manufacturers

ROOM FOR INNOVATION

Continuous innovation required to generate "ideal" drug

Five-day treatment

WHAT DID WE LEARN FROM COVID-19?

We were unprepared:

 Lack of investment in development of antivirals—particularly those targeting readily-transmissible viral families—resulted in a very limited therapeutic arsenal for COVID-19

Repurposing compounds has had limited impact:

 Clinical trials of repurposed compounds have demonstrated limited utility for addressing COVID-19; waiting until the next pandemic to pursue novel R&D will be too late

There's a need to focus upstream in the course of disease:

 Repurposed compounds are largely targeting disease process in moderate to severe patients, but there is a significant need for therapeutics that target mild to moderate patients (and even individuals pre/post-exposure)

...and we must get ahead of these challenges before the next pandemic hits

RESPIRATORY VIRUS FAMILIES WITH POTENTIAL TO CAUSE NEXT PANDEMIC

	Coronaviruses	Orthomyxoviruses	Paramyxoviruses	
Symptomatic disease with high (mortality)	Respiratory (1 to 10%)	Respiratory (1-2%)	Respiratory and neurologic disease (>40%)	
Aerosol transmission	$R_0 > 7$ (omicron)	$R_0 = 2$	$R_0 = 0.5$ (limited transmission)	
Seasonal strains circulate in humans	NL63, OC43	Seasonal influenza A and B	RSV, parainfluenza virus, metapneumovirus, measles	
Caused pandemics or outbreaks	COVID-19, SARS-CoV-1, MERS	1918 H1N1 influenza	Outbreaks of Nipah virus in Malaysia and India	
Animal reservoirs	Bats	Pigs, fowl, migratory birds, horses	Bats, pigs (Nipah) and horses (Hendra) are amplifying hosts	
Direct Acting Available Antivirals	Nirmatrelvir (Mpro) Molnupiravir (RdRp) I.V. Remdesivir (RdRp)	Tamiflu (Neuraminidase) Xofluza (Exonuclease) Favipiravir (RdRp)		
Host Directed	IFN-λ; IFN-β (tbd)	IFN-λ, IFN-β (tbd)	IFN-λ, IFN-β (tbd.)	

 R_0 measles = 15, smallpox = 3-6

WHAT DO WE NEED TO DO TO BE BETTER PREPARED FOR THE NEXT PANDEMIC?

Address viral families with highest potential of causing the next pandemic...

...with therapeutic modalities that can be widely accessed...

...through support of discovery and early clinical development

Development of therapy pipeline for **coronavirus**, **orthomyxovirus** and **paramyxovirus** (specifically Nipah + Hendra) viral families Focus on development of small molecule antiviral therapeutics

Therapeutics may inhibit either **viral or host targets**, if host targets are directly implicated in viral replication

Therapeutics may stimulate specific host antiviral responses that prevent infection

Activities required to identify, optimize, and bring a **new molecule through Phase 1** clinical trials

Investments in new **assays and models** that facilitate discovery and early development

WHY ARE SMALL MOLECULE DRUGS THE IDEAL TOOL FOR PANDEMIC PREPAREDNESS?

- 1. Can be developed for any respiratory viral pathogen (family) of pandemic potential
- 2. Can be stockpiled, with immediate availability in case of the emergence of a novel pathogen of concern (before vaccine development)
- 3. Fit for post-exposure prophylaxis and early therapy use cases
- 4. Utility in suppressing transmission
- 5. Efficacy when vaccines fail (in those with compromised immune function; in the face of immune escape variants)
- 6. Affordable, deliverable, scalable, accessible

Consideration: Use Case and Target Product Profile (TPP)

Critical to define how a drug will be used

InterventionsPre-exposure prophylaxis (PrEP)Post-exposure prophylaxis (PEP)TreatmentTreatment• Outbreak response • Protect vulnerable populations (health care workers, first responders, pregnant women)• Outbreak response • Contacts• Prevent progression to severe disease in high-risk patients• Control over-active immune response, other symptomsConsiderations• Safety profile – any side effects will not be tolerated • Regulatory• Safety profile – minimal side effects• Peak viral load • High likelihood of compliance • Patients will likely tolerate some side- effects or inconvenience• Antivirals unlikely to be effects or inconvenience	Disease progression	Pre-exposure	Post-exposure incubation	Mild disease	Severe disease
 Protect vulnerable populations (health care workers, first responders, pregnant women) Considerations Safety profile – any side effects will not be tolerated effects will not be tolerated . Regulatory Sagety profile – any side effects or be effective – need to target host processes rather than the virus 	Interventions			Treatment	Treatment
effects will not be tolerated side effects • Regulatory • Regulatory		 Protect vulnerable populations (health care workers, first responders, 	•	to severe disease in	immune response,
Target virus Target host	Considerations	effects will not be tolerated	side effects • Regulatory	 High likelihood of compliance Patients will likely tolerate some side-	be effective – need to target host processes rather than the virus

TARGET PRODUCT PROFILE

Defines the characteristics of the product (as on the drug label), based on the Use Case

	Attribute	Minimal acceptable		Idea	Ideal		Annotations	
	Indication							
	Target population							
Special considerations for global use:	Target countries							
	Efficacy		This					
No requirement for monitoring	Safety		describes the criteria		This —		Can be	
No drug-drug interactions 🔿	Coadministration		to be		describes		capture	
Minimal 🔿	Contraindications		achieved		the "best		information	
Oral 🔿	Route of administration		for a		case"		relevant to	
No specialized formulation 👄	Dosage form/schedule		be of use		scenario		the	
Heat stable 🔿	Shelf-life		clinically				- attribute -	
Very low 🔿	Cost of goods							
No cold chain 🔿	Storage							
Global strategy, WHO PQ 🔿	Regulatory path							
	N	Лos	t products fall betw	r veen	these characterist	ics		

TARGET CANDIDATE PROFILE

Defines the characteristics of the candidate... many factors to consider

Efficacy

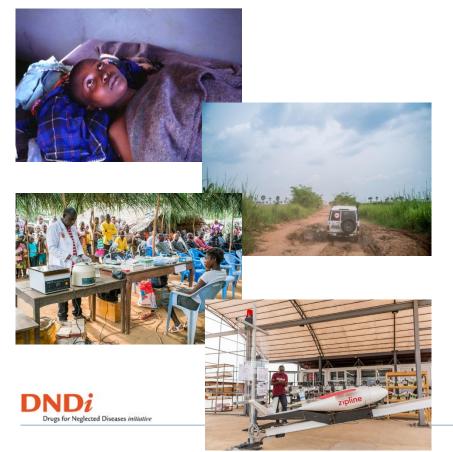
Activity against pathogen Enzyme activity Selectivity Frequency of resistance Animal model etc.

DMPK

in vitro Solubility Permeability Efflux ratio Microsomal turnover Cyp inhibition/induction Metabolite id etc.

in vivo Oral bioavailability Elimination half-life Volume of distribution Dose linearity Tissue distribution etc.

Toxicity


in vitro Micronucleus test Ames test hERG assay CEREP panel etc.

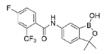
in vivo Maximum tolerated dose Dose-limiting toxicology Therapeutic index Dose for IND-enabling studies etc.

Chemistry/ Pharm. Dev.

Synthetic route IP status Preclinical formulation Salt selection Polymorph screening Stability Human dose prediction etc.

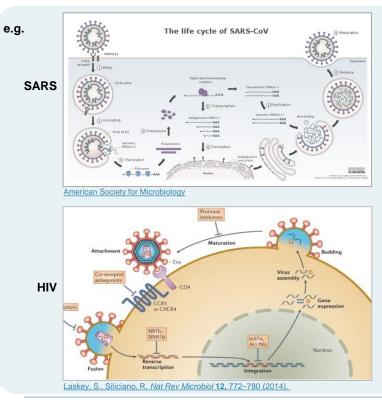
A SUCCESS STORY: HUMAN AFRICAN TRYPANOSOMIASIS

1949 Melarsoprol


2009 NECT^{1,2} Eflornithine

2018 Fexinidazole³

2023? Acoziborole⁴ (Pending approval)



¹https://doi.org/10.1016/S0140-6736(09)61117-X ²https://doi.org/10.1371/journal.pntd.0000720 ³https://doi.org/10.1016/S0140-6736(17)32758-7; ⁴https://doi.org/10.1016/S1473-3692220664429jnda Gates Foundation | 15 ⁴https://doi.org/10.1016/S1473-3099(22)00660-0

VIRUS LIFECYCLE AND POINTS OF INTERVENTION

Viruses are diverse and propagate in human cells in different ways

- Viruses have relatively small genomes and therefore not many proteins or enzymes to target
- Targets may have same function but differ in gene sequence and protein structure from family to family or even within the same family
 - e.g., Proteases differ mechanistically (HIV has aspartyl, SARS-CoV-2 has cysteinyl) and in substrate specificity
 - Drug designed against one virus unlikely to be effective against another (with some exceptions)
- Viruses mutate quickly and can escape target inhibition
- There has been limited success in targeting host factors essential for viral replication
 - > Small magnitude of effect, potential for toxicity

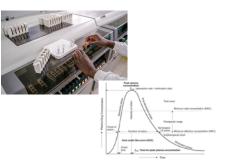
ANTIVIRAL DRUG DISCOVERY

		Typical R&D timelines			
~2 years	~2 years	~2-4 years	~2-3 years	~3-4 years	
Biology Research	Early Drug Discovery	Late Drug Discovery	Preclinical Tox & Phase 1 Safety	Post Phase 1	
Target ID, Virology	Hit ID, Medicinal chemistry lead optimization	Lead optimization, <i>in vivo</i> PK and efficacy, mechanism of action	Drug metabolism, safety, formulation development, GLP PK toxicology, scale up process development	Phase 1 safety, PK and tolerability, clinical assay development and formulation	
Pipeli	ne of drug candidates				

Challenges with antiviral drug discovery and development

- 1. Access to virology laboratories with BSL2, BSL3, and BSL4 containment
- Obtaining drug exposure at C_{min} above IC₉₀ for inhibition of virus replication with dosing schedules that inhibit virus replication until the host immune response controls infection
- Lack of animal models of virus replication to establish preclinical PK/PD relationships

Pay attention to drug resistance


Problem

- Chronic infections (e.g., HIV, HCV) require combination therapy to reduce emergence of resistant variants
- For acute viral infections, treatment emergent resistance can reduce clinical efficacy and introduce variants into the population Solution
- Develop combination therapies to reduce resistance emergence
- Study resistance pathways to understand resistance risk
- Measure the fitness of resistant variants to understand impact on replication and pathogenesis
- Study cross resistance

INTEGRATED DRUG DISCOVERY

© Bill & Melinda Gates Foundation | 18

WHAT WILL BE THE IMPACT OF AI IN DRUG DISCOVERY?

Insilico Medicine Announces Novel 3CL Protease Inhibitor Preclinical Candidate for COVID-19 Treatment USA-Engline

NEWS PROVIDED BY Insilico Medicine → May 24, 2022, 09:00 ET

 Insilico's candidate demonstrated a favorable profile with good in vivo efficacy at low doses, efficient synthesis, and no need for co-administration with Ritonavir.

 The candidate is intended to be used for the treatment of SARS-CoV-2 and its variants, along with other coronaviruses. Insilico's candidate has a novel structure that can be synthesized efficiently, designed by its propriety AI-driven small molecule generation platform, Chemistry42. 20 PostEra About Us

CASE

ry ~ Join the Team

Manifold

PostEra's machine learning drove the prioritization of crowdsourced ideas

COVID Moonshot: PostEra's

world drug discovery

machine learning platform in real

Moonshot crowdsourced antiviral ideas, inspired by a fragment screen, from over 400 scientists around the world. PostEra's machine learning drove the prioritization of these ideas and designed the synthesis of all 2000 compounds made as part of COVID Moonshot as well as using our ML technology to develop new <u>chemotynes</u>.

In 18 months, the project progressed from a fragment screen to the nomination of Development Candidates ready for IND-enabling studies.

Source: https://insilico.com/news/

Source: https://postera.ai/moonshot/

COOPERATION

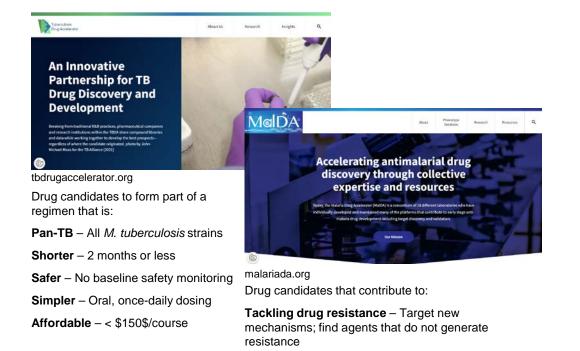
Investments in early science & preclinical tools

Develop resources that **could be used by all partners**, e.g., disease models, implicated pathways, targets, in vitro assays, animal models

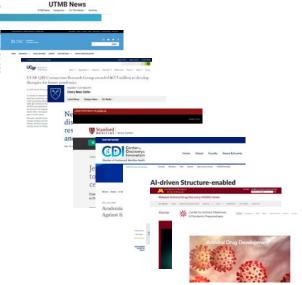
Data sharing and access commitments

Responsible pricing for low- and middle-income countries + open access publication, data sharing for precompetitive activities

Professional drug discovery


Engagement of Pharma, Biotech, Nonprofit and CROs

Funding Partnerships


Align with **public sector/philanthropic** funders and **governments:** Leverage additional capacity & support for infrastructure & translational development

EXAMPLES OF COOPERATIVE PROGRAMS

NIH National Institute of Allergy and Infecticus Diseases Antiviral Drug Discovery (AViDD) Centers for Pathogens of Pandemic Concern

4

Improving compliance – Single exposure radical cure

Driving towards elimination and eradication – Ability to block transmission

PARTNERSHIP

GATES foundation

https://padinitiative.com/

The primary mission is to catalyze discovery and early development of a panel of antivirals for treatment of pandemic threat viruses that include coronaviruses, orthomyxoviruses and paramyxoviruses

The antivirals must meet a target product profile suitable for global deployment

Commitment to global access principles and global engagement to increase impact

Initial combined investment of up to \$90M

Pandemic preparedness: Accelerating the discovery of new therapeutics

- 1. Learn from past failures and develop countermeasures now against viral threats
- 2. Ensure innovation results in antiviral developments suitable for global deployment
- 3. Multi-disciplinary teams are key to success
- 4. Coordinate and integrate as with the PAD initiative to increase efficiency
- 5. Ensure equitable access to new products key to stopping an emerging pathogen