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Illustrative diagram of cancer risk models for low dose 

radiation, including the LNT dose-response (non-threshold)

Background - Low Dose Radiation Research

➢ Low dose radiation defined as  < 100mSv

➢ Radiation research at higher doses indicates a 
linear relationship between the risk of adverse 
health effects and radiation dose

➢ At doses below 100mSv the data is ambiguous

➢ Current radiation safety protections extrapolate 
risk linearly with dose, hence the Linear No-
Threshold (LNT) hypothesis

➢ The actual shape of the dose-response curve 
remains hotly debated to this day and unresolved 
due to the difficulty of problem

• Radiation is a known carcinogen
• The primary health risk of radiation 

exposure is cancer
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Airport X-ray scanner 0.00007
Rounds trip flight LA- NYC ≈ 0.037
Dental (x-ray) 0.005*
EPA dose limit – public drinking water 0.04
EPA dose limit – from release in air 0.1
Chest x-ray 0.1*
Mammography 0.4*
DOE, NRC dose limit for the public (ICRP, NCRP) 1
Natural Background, USA (includes radon) ≈ 3.1
Head Computed Tomography (CT) scan (x-ray) 2*
Chest CT scan (x-ray) 7*                                                
Abdominal & Pelvis CT (x-ray) 10*                                               
DHS Emergency guideline for relocation 20
DOE, NRC dose limit for workers 50
International Space Station (ISS) mission typical 
daily exposure 

≈ 0.5-1.2 mSv d-1

Acute exposure detectable in blood >400
Life Span Study (A-bomb survivors) 0 – 4000
Human LD50 acute exposure (no medical 
intervention)

3500 – 5000

Whole body, acute; circulating blood cell death; 
moderate GI damage (death probably 2-3wks) 

5500 – 7500

Exposure route Dose (mSv) 

Radiation doses and dose limits for various environments and 

diagnostic procedures

What are the Major Sources of 

Low Dose Radiation Exposure?

➢ Natural annual background radiation dose is about 
3mSv

➢ Average annual dose in the U.S. is about 6mSv

➢ Medical diagnostics span a range of exposure levels 
from very low to significant

➢ For reference, lethal doses of radiation are in the 
range of  5.5 -7.5 Sv

An increasing and major source of 
radiation exposure to the general public is 
through medical diagnostics and imaging
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Challenges to Resolving Potential Health Threats of Low Dose Radiation 

Exposure

➢ Low dose radiation is a weak carcinogen (high doses are very carcinogenic)

➢ Cancer has many other known causes (smoking, sedentary life-style, environmental factors, etc.) 

➢ Cancer is a common affliction (40% adults will have some form of cancer over their lifetime) 

Attempts to clearly define the contribution of low dose radiation to cancer initiation in 
humans has been actively researched for past the ~40+ years 

➢ Epidemiological studies at low doses have been inconclusive and non-causative

➢ Research on surrogate models do not necessarily translate well to humans

➢ Current radiation protection regulations are based largely on the Life Span Study (LSS) of atomic bomb 
survivor; one of the most detailed and complete health study of irradiated human beings

➢ For broader impact on cancer health effects, a revised low dose radiation research effort would need 
to produce results that add to, explain and extend results of the LSS



Office of Biological and Environmental Research

DOE’s Previous Low Dose Radiation Research Program

➢ Managed in DOE-BER for 18 years

➢ Extension of DOE’s historical radiobiology efforts extending back decades

• Focused on doses below 100mSv

➢ Research performed in university and DOE laboratory-led projects

➢ A focus of technology development (ex. microbeam technology)

➢ Some fundamental discoveries:

• New insights to the “hit model”, bystander effect, ROS species, adaptive response

➢ Ended in 2016 as the DOE-BER portfolio shifted towards bioenergy and environment

• Some good insights into the effects of low dose radiation on cellular function

• Little impact on radiation protection regulations or ameliorating public fear of radiation/nuclear 
power 
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What is DOE Doing Now in Low Dose Radiation Research

➢ Genomics-centric focus starting with development of a computationally-driven approach

• Leveraging the JDACS4C partnership with NCI 

• Focus on human genomic/’omic information from datasets and published literature

➢ Seeking patterns of harmful/harmless mutations related to radiation exposure

• Link with NCI datasets (Cancer genome atlas, others)

• Link with NCBI datasets (GEO, etc.)

• International datasets (UKBiobank, RERF, etc.)

• Link with radiooncology and radiation epidemiology efforts

➢ Use the data to build physical models of risks posed by radiation-induced mutations across a range of dosages

• Seek to reproduce cancer incidences with dose in LSS data and other data sets of radiation and cancer (other 
DOE legacy epidemiological datasets) 

• Develop more “causal” links between genomics and radiation exposure and cancer

Congress has appropriated funding to restart low dose radiation research in DOE in FY20, ($5M), FY21 
($5M) and FY22 ($8M) and for FY23 up to $20M

Since FY20 DOE has initiated a different, but complementary approach to low dose radiation research  
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Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) | CBIIT

Bringing Artificial Intelligence and Machine 

Learning Techniques to Low Dose Radiation 

Research

➢ Supplement existing/ongoing joint computational efforts 
between DOE and NCI for cancer research under the Joint 
Design of Advanced Computing Solutions for Cancer 
(JDACS4C) program

➢ Project led by Argonne National Laboratory in 
collaboration with: Brookhaven National Laboratory and 
Oak Ridge National Laboratory

Couples DOE’s computational capabilities with NCI’s 
vast datasets and cancer research data 

https://datascience.cancer.gov/collaborations/joint-design-advanced-computing
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CANcer Distributive Learning Environment (CANDLE)

One of DOE’s Exascale Computing 
Projects

• Identification of key molecular interactions, based on molecular 
dynamic simulations of proteins, specifically RAS

• Predictions of tumor response to drug treatments, based on 
molecular features of tumor cells and drug descriptors

• Better characterization of cancer patient trajectories and outcomes 
using a growing compendium of clinical information

Using AI and ML concepts to as tools link molecular scale interactions 
with cancer drug treatments/responses to patient outcomes

The RadBIO-AI Project is a Supplement to CANDLE

➢ An open source, collaboratively developed software platform that 
provides deep learning methodologies for accelerating cancer research

➢ One of the DOE-NCI JDACS4C projects  

Extending this effort to the low dose radiation research 
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Campaign 1 is aimed at the questions related to discovering signatures of radiation 
damage, characterizing these signatures, and producing a set of predictive models 
that can be used to detect these signatures in a sample

RadBIO-AI Project

➢ Train models on patterns of gene expression data 
that can be linked to: 

• radiation exposure

• dose rate

➢ Patterns of genomic variation that may be 
indicative of radiation exposure, e.g., changes in:

• single nucleotide variation

• multi-nucleotide variation

• indels

• other changes beyond random mutation

➢ Test the models against published datasets

➢ Gene expression datasets from NCBI GEO

➢ Gene expression and variation data from 
Genomic Data Commons (GDC)

➢ SNP/genotyping datasets from UK Biobank

Davidson, P.R., Sherborne, A.L., Taylor, B. et al. A pooled mutational 
analysis identifies ionizing radiation-associated mutational signatures 
conserved between mouse and human malignancies. Sci Rep 7, 7645 
(2017). https://doi.org/10.1038/s41598-017-07888-0

Jain V, Das B. Global transcriptome profile reveals abundance of DNA 
damage response and repair genes in individuals from high level natural 
radiation areas of Kerala coast. PLoS One. 2017 Nov 21;12(11):e0187274. 
doi: 10.1371/journal.pone.0187274. PMID: 29161272; PMCID: 
PMC5697823.

LifeSpan Study (LSS) data from RERF
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Campaign 2 is aimed at building a framework for capturing longitudinal radiation 

exposure profiles and using these profiles to estimate cancer risk

RadBIO-AI Project Cont’d

• Capture and model longitudinal environmental exposure

• Estimate how environmental factors change the risk of cancer throughout an 
individual’s lifetime?

• Extract terms from medical records that indicate a patient was exposed to radiation?

Dataset

Radnet (background gamma 
counts)

Radon zone (EPA)

Nuclear power plant

I-131 exposure (NCI)

Per capita air travel

Air quality

Cancer Incidence



Office of Biological and Environmental Research

Campaign 3 is aimed at extracting associations from the scientific and biomedical literature 
that can be used to advance our understanding of low-dose radiation biology, create novel 
hypotheses for computational testing, and to create Bayesian priors that may improve the 
predictive capacity of our machine learning methods

RadBIO-AI Project Cont’d

• Use machine learning/AI to extract from 
the biomedical literature the 
identification of radiation induced 
cellular pathway perturbations?

• Use the biomedical literature to 
generate priors that improve our 
machine learning methods? 

true model
(unknown)

model 
uncertainty
class

Pathways

MKDIP (Maximum Knowledge-Driven Information Prior)

• MKDIP transforms prior scientific knowledge and data into a prior 
distribution representing model uncertainty

• The constructed prior can be used for uncertainty quantification, robust 
operator design, optimal experimental design in a Bayesian framework

Omics data

Literature

Boluki et al. BMCBioinformatics2017, 18(Suppl 14):552 Page 65 of 169

point xi arises from a mixture of multinomial distribu-

tions:

Pθ(xi ) =

M− 1

j= 0

cjPθj (xi ), (8)

whereM is thenumber of components. When thereexists

two components, similar to binary classification, M = 2.

The conjugate prior distribution family for component

probabilities (if unknown) is the Dirichlet distribution. In

the mixture model, no closed-form analytical posterior

distribution for the parameters exists, but Markov chain

Monte Carlo (MCMC) methods [43] can be employed

to numerically calculate the posterior distributions. Since

the conditional distributions can be calculated analyti-

cally in the multinomial mixture model, Gibbs sampling

[44, 45] can be employed for the Bayesian inference. If

the prior probability distribution over the component

probability vector (c= [ c0,c1, . . . ,cM ]) is a Dirichlet dis-

tribution D(φ) with parameter vector φ, the component-

conditional probabilities are θj = [ p
j
1,p

j
2, . . . ,p

j

b
], and the

prior probability distribution over them isDirichlet D(αj)

with parameter vector αj(asin theclassification problem),

for j = 1, . . . ,M , theGibbsupdatesare

y
(t)
i ∼ P yi = j|c(t− 1) ,θ(t− 1) ,xi ∝ c

(t− 1)
j p

j,(t− 1)
xi

c(t) ∼ P c|φ,y(t) = D φ +
n

i= 1
I
y

(t)
i = 1

, . . . , I
y

(t)
i = M

θj
(t) ∼ P θj |x,y(t) ,α j

= D α j +
n

i= 1:y
(t)
i = j

Ixi = 1, . . . , Ixi= b ,

where the super-script in parentheses denotes the chain

iteration number, Iw isone if w is true, and otherwise Iw is

zero. In this framework, if the inference chain runs for Is

iterations, then the numerical approximation of the OBC

classification rule is

ψOBC(k) ≈ arg max
y∈ {1,...,M }

Is

t= 1

c(t)
y p

y,(t)

k
. (9)

Without loss of generality the summation above can be

over the iterations of the chain considering burn-in and

thinning.

Prior construction:general framework

In this section, we propose a general framework for prior

construction. We begin with introducing a knowledge-

driven prior probability:

Definition 1 (Maximal Knowledge-driven Information

Prior) If is a family of proper priors, then a maximal

knowledge-driven information prior (MKDIP) isa solution

to thefollowingoptimization problem:

argmin
π∈

Eπ[ Cθ(ξ ,D)] , (10)

whereCθ(ξ ,D) isa cost function that dependson (1) θ: the

random vector parameterizing the underlying probability

distribution, (2) ξ: state of (prior) knowledge, and (3) D:

partial observation (part of thesampledata).

Alternatively, by parameterizing theprior probability as

π(θ;γ ), with γ ∈ denoting the hyperparameters, an

MKDIPcan befound by solving

argmin
γ ∈

Eπ(θ;γ ) [ Cθ(ξ ,D,γ )] . (11)

In contrast to non-informativepriors, theMKDIPincor-

porates available prior knowledge and even part of the

data to construct an informative prior.

The MKDIP definition is very general because we want

ageneral framework for prior construction. Thenext def-

inition specializes it to cost functions of aspecific form in

a constrained optimization.

Definition 2 (MKDIP: Constrained Optimization with

Additive Costs) As a special case in which Cθ can be

decomposed into additive terms, the cost function isof the

form:

Cθ(ξ ,D,γ ) = (1 − β)g
(1)
θ (ξ ,γ ) + βg

(2)
θ (ξ ,D),

where β is a non-negative regularization parameter. In

this case, the MKDIP construction with additive costs

and constraintsinvolvessolvingthefollowingoptimization

problem:

argmin
γ ∈

Eπ(θ;γ ) (1− β)g
(1)
θ (ξ ,γ ) + βg

(2)
θ (ξ ,D)

Subject to: Eπ(θ;γ ) [ g
(3)
θ,i (ξ)] = 0; i ∈ {1, . . . ,nc},

(12)

where g
(3)
θ,i , ∀ i ∈ {1, . . . ,nc}, are constraints resulting from

thestateof knowledgeξ via a mapping:

T : ξ → Eπ(θ;γ ) g
(3)
θ,i (ξ) ,∀ i ∈ {1, . . . ,nc}.

In the sequel, we will refer to g(1)(·) and g(2)(·) as the

cost functions, and g
(3)
i (·)’s as the knowledge-driven con-

straints. Webegin with introducing information-theoretic

cost functions, and then we propose a general set of map-

ping rules, denoted by T in Definition 2, to convert bio-

logical pathway knowledge into mathematical forms. We

then consider special cases with information-theoretic

cost functions.

Information-theoreticcost functions

Instead of having least squares(or mean-squared error) as

thestandard cost functionsin classical statistical inference

MKDIP

or other 

measurem

ent data

or other 

relational 

knowledge

Knowledge 

obtained 

via NLP

The optimal prior should satisfy the 

constraints arising from prior knowledge

MKDIP constructs the prior by 

optimizing it to best represent the 

available knowledge & data

Use Natural Language Processing (NLP) to search the literature, identify datasets, add the relevant 
datasets to the existing knowledgebase and improve predictions

Links back and informs Campaign 1  
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Potential Outcomes of AI/ML Approaches

Leveraging AI/ML techniques and high-performance computing to:
• Integrate multiple complex genomic/omics datasets/records/cancer treatment 

information

• Analyze radiation exposure data (environmental, medical diagnostics, workplace, etc.) 

• Examine the totality of the published research literature on cancer and radiation 
exposure studies

• Seek predictive patterns of genomic/omic changes due to radiation exposure linked 
to health impact

Building a powerful capability to identify subtle patterns in massively complex and 
disparate data leading to testable hypotheses regarding cancer and low dose 
radiation exposure  
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A Goal for these Computational Efforts

➢ Identify mutational patterns related to cancer incidence due to 
radiation exposure
• Known mutations and identify unknown patterns.

➢ Seek to develop relationships between patterns of observed 
genomic mutations and radiation dose.

➢ Develop physical models that may help explain patterns of 
genomic mutations leading to cancer relative to expected 
random patterns of genomic mutation
• Implications for identifying a “threshold” dose and even 

specific patterns that may be related to enhanced 
susceptibility

• Implications to examine other health effects as well.   

Improved genomic-focused understanding of cancer on which to re-examine the 
relationship between radiation dose and health risk 

G
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Radiation Dose
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Potential Links with NCI Programs

Building a Robust AI/ML Capability for Low Dose Radiation Exposure
➢ Seeking to find patterns of genomic mutational signatures associated with radiation 

exposure leading to adverse health outcomes (e.g. cancer)

➢ Mutation patterns may be a way to “scale” estimates of risk to lower radiation doses.

• Need access to large human genome datasets and associated health data to 
establish baseline level of natural variability

• Compare with known cancer-related mutational signatures

• Seek ways to understand mutational patterns of radiation exposure.

• Need epidemiological data that includes genomic data

➢ Adapt physical models and simulation to mutational patterns to assess risk.

Potential Connections with NCI programs
➢ NCI datasets (NIAID, NHGRI) 

➢ Epidemiology groups (radiation epidemiology)

➢ Radiation Oncology Branch 

o Mutational patterns of radiation exposure at varying doses



Complements Priority Low Dose Radiation Research Goals from a NASEM Strategic Plan 

Priority Research Goal Approach

E1 Develop and deploy analytical tools for radiation 
epidemiology.

Develop cohorts of sufficient size, with detailed health information and biosample collection and accurate dosimetry, to support 
epidemiological studies of radiation-induced health effects in medically, occupationally, and environmentally exposed U.S. populations.

E2 Improve estimation of risks for cancer and non-cancer 
health outcomes from low-dose and low-dose-rate external 
and internal radiation exposures.

More precisely define health outcomes to enable exclusion of diseases caused by other effects, identifying easily measured signatures that 
can serve as disease surrogates by improving dosimetry and identifying and compensating for confounding and modifying factors.

E3 Determine factors that modify the low-dose and 
lowdose-rate radiation-related adverse health effects.

Assess the impact of genetic makeup, epigenomic status, DNA repair efficacy, comorbidities, exposure history to radiation and other agents, 
lifestyle and psychosocial factors, and immune status on radiation induced adverse health outcomes.

B1 Develop appropriate model systems for study of lowdose
and low-dose-rate radiation-induced health effects.

Identify laboratory model systems in which molecular, cellular, and pathological features of radiation-induced health effects are similar to 
humans.

B2 Develop biomarkers for radiation-induced adverse 
health outcomes.

Identify radiation-induced changes in cellular and molecular features that causally link to adverse health effects in appropriate model 
systems.

B3 Define health-effect dose-response relationships below 
10 mGy and below 5 mGy/h.

Establish radiation dose-response curves for molecular and cellular endpoints and for associated early- and late-stage diseases at doses 
below 10 mGy and dose rates below 5 mGy/h.

B4 Identify factors that modify or confound estimation of 
risks for radiation-induced adverse health outcomes.

Assess the impact of genetic makeup, epigenomic status, DNA repair efficacy, comorbidities, exposure history to radiation and other agents, 
lifestyle factors, and immune status on low-dose and low-dose-rate radiation-induced adverse health effects and associated cellular and
molecular response endpoints.

I1 Tools for sensitive detection and precise characterization 
of aberrant cell and tissue states.

Identify, develop, and deploy bulk and single-cell -omicsa and image measurement and computational analysis workflows to quantify 
disease-linked cellular and molecular signatures that are sufficiently sensitive, reliable, and low cost for wide-scale application.

I2 Harmonized databases to support biological and
epidemiological studies.

Develop accessible databases that document exposure levels, rates, types, and durations as well as cell, molecular, and health outcomes for 
human populations and experimental models.

I3 Dosimetry for low-dose and low-dose-rate exposures. Elucidate biological localization of internalized radionuclides; directly measure radiation-induced damage and associated response 
mechanisms; develop high-fidelity anatomically and physiologically based dosimetry; develop and apply modern statistical and 
computational methods for dose reconstruction.

I4 Facilities for low-dose and low-dose-rate exposures Ensure access to low-dose and low-dose-rate exposure facilities, including those allowing internal exposure in model systems by a variety of 
routes (e.g., inhalation, ingestion) or invest in new facilities.
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Outlook for AI/ML Computational Capabilities

Computational Efforts are a Start to Revamping Low Dose Radiation Research in DOE

➢ To date, it has not been possible to establish the broad-scale program envisioned in the NASEM strategic plan 
report, given the resources provided

➢ The AI/ML efforts being undertaken by DOE are not the sole solution to low dose research
• It is a different approach – takes advantage of rapidly advancing AI/ML techniques for research
• Applies world-class leading-edge capabilities to a challenging problem  
• Could help guide future epidemiological and experimental efforts in a broader portfolio
• Not a short-term issue – requires early investment to establish the capability 

➢ It is opportunity for DOE to apply unique signature capabilities to a challenging problem
• Continues and broadens an established collaboration with NCI
• Seeks additional connections with other elements within NCI and broader NIH programs

AI/ML computational capabilities hold potential to be incredibly valuable 
resources for low dose research
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Efforts in FY 2023 

DOE’s Office of Environment, Health, Safety and Security (EHSS)
➢ Coordinate access to legacy epidemiology datasets with the RAD-Bio AI project
➢ Coordinate on research needs within the EHSS portfolio
➢ Gain assistance from EHSS staff with backgrounds in radiation biology 

Funding in FY 2023
➢ BER’s appropriation guidance for low dose radiation research in FY 2023 is “up to” $20M. 
➢ Overall BER’s budget is extremely tight
➢ It is likely that BER will be able to maintain at least an $8M effort given the significant guidance.



Thank you

https://science.osti.gov/ber

https://www.energy.gov/science/ber/biological-and-
environmental-research

https://science.osti.gov/ber
https://www.energy.gov/science/ber/biological-and-environmental-research
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