If you build it, will they come? Testing the "value proposition" for tissue chips in drug and chemical safety assessments

Ivan Rusyn, MD, PhD

University Professor, Texas A&M University

Research funding from NIH/NCATS: U24 TR001950, U24 TR002633

Research funding from US EPA: RD840032

TEX-VAL Tissue Chip Testing Consortium is funded by:

- American Chemistry Council Bristol Myers Squibb
- US EPA Sanofi-Aventis
- National Toxicology Program Unilever

Tissue Chips Landscape (NIH funding)

What type of "validation" will help NIH move tissue chips into practice?

Option 1: "Real" validation

OECD GD 34 – Guidance document on the validation and international acceptance of new or updated test methods for hazard assessment

European Union Network of Laboratories for the Validation of Alternative Methods:

37 EU-NETVAL Test Facilities

Option 2: "Organic" validation [*a.k.a.* "if we build it, they will come"???]

Some basic truths about onboarding remain the same since the dawn of technology...

Option 3: "Fit for purpose" validation [an END USER-directed activity]

- Tissue chip technologies are are rapidly developing (what do you test??)
- Potential users (*e.g.*, pharmaceutical companies) are weary of "placing all eggs into one basket"
- Tissue chip development "market" is still highly fragmented which makes it difficult to establish strategic partnerships
- Are MPS a "commodity" or "advantage"?
- The users and regulators need a "safe place" consortium to select and test most promising technologies and to gain confidence through an independent third-party testing

Texas A&M University Tissue Chip TESTING Center (TEX-VAL)

	Tier -1:	Tier 0:	Tier 1:	Tier 2:	
	Collaborative research and	Tissue chip testing without cells	Reproducibility testing of	Extending the utility of the	
	technology transfer agreements	 Assembling of tissue chips 	tissue chips	tissue chips	
	 Execution of all legal agreements 	•Testing of the flow and operation	 Replicating published studies 	•Defining the "context of use"	
	 Sharing of the protocols 	 Testing drug binding to devices 	•Evaluation of key findings	•Conducting additional studies	
•TAMU staff training with developers		 Development of LC-MS methods 	•Detailed protocols and SOPs	 Depositing data into MPS-Db 	

4-8 months period of testing for each tissue chip/microphysiological system (MPS)

Oct. 2016 – Sept. 2019 (TEX-VAL 1.0)

Proximal kidney tubule	Himmelfarb/Kelly (Univ. Washington)
Neurovascular unit (BBB)	Wikswo (Vanderbilt)
Bone +/- tumor	Vunjak-Novakovic (Columbia)
Gut enteroid	Donowitz/Estes (JHU/BCM)
Skin from iPS cells	Christiano (Columbia)
Heart	Healy (UC-Berkeley)
Vasculature +/- tumor	Hughes (UC-Irvine)/George (UC-Davis)
Skeletal muscle	Truskey (Duke)
Liver (multi-cell)	Taylor (University of Pittsburgh)
Liver	Healy (UC-Berkeley)
White fat	Healy (UC-Berkeley)

Arteriole-scale vessel	Truskey (Duke)			
Salivary gland	Benoit (U-Rochester)			
Vascularized kidney	Himmelfarb/Kelly (Univ. Washington)			
Atria on a chip	George (UC-Davis)			
Bone joint & cartilage	Tuan (University of Pittsburgh)			
Small Airway	Huh (University of Pennsylvania)			
Vascularized Liver (vLAMPS)	Taylor (University of Pittsburgh)			
Vascularized micro-Liver	Hughes (UC-Irvine)			

Oct. 2018 – Sept. 2021 (TEX-VAL2.0)

TEX-VAL

TEX-VAL Tissue Chip Testing: Diversity of experience with MPS

Static cultures

Columbia Univ.: Bone +/- Tumor Model

 De-cellularized bovine trabecular bone Human osteoblasts and Ewing's sarcoma cells

Simulating cancer treatments in vitro (3D and 2D)

Cancer cell viability after treatment 2D 3D Methotrevate Dexamethasone 00 % Viability (of Controls) % Viability (of Controls)

TEX-VAL

"Gravity Flow" cultures

Univ. Cal.-Berkeley: Cardiac Model

Vehicle

10µM Cisapride

"Forced Flow" cultures

Univ. Wash.: Proximal Tubue

TEX-VAL Status of Depositing Data to U-Pitt MPS Db (Fall 2020) https://upddi.pitt.edu/microphysiology-systems-database/

Tissue Chin Model	# Wells/Chips		# Data Points in MPS Database		# Images in MPS Database		# Videos in MPS Database		Data Upload	Data Availability
	2D	3D	2D	3 D	2D	3D	2D	3D		
Proximal Tubule, U-Washington	500	91	4,057	2,878	151	1,254	-	-	Complete	Available
Blood-Brain Barrier, Vanderbilt	-	9	-	1,289	-	-	-	-	Complete	Available
Bone/Tumor, Columbia	462	234	1495	7,669	256	114	-	-	Complete	Available
Skin, Columbia	-	224	-	1,512	-	157			Complete	Available
Cardiac Tissue, UC-Berkeley	1091	141	9,084	9,456	1,069	1,164	146	124	Complete	Available
Gut Enteroid, Baylor College Med	4,488	1,382	4,488	6,656	-	-	-	-	Complete	Available
Vascularized Tumor, UC-Irvine	320	69	320	3,370	-	1,596	-	-	Complete	Available
Liver, UC-Berkeley	90	81	2,736	6,509	180	126	-	-	Complete	Available
Liver (multi-cell), U-Pitt	220	90	5,985	7,279	565	224	-	-	Complete	Available
White Adipose, UC-Berkeley	626	104	4,736	600	32	32	-	-	Complete	Available
Skeletal Muscle, Duke	-	192	-	21,568	-	2,758	-	-	Complete	Available
Atrial Cardiomyocyte (2.0), UC-Davis	178	6	2,624	3,768	-	-	-	-	In progress	-
Kidney (2.0), U-Washington	-	21	-	796	-	167	-	-	In progress	-
TOTAL	7,975	2,638	35,525	73,350	2,253	7,435	146	124		
TEX-VAL				M	XAS A	&M	Ti	ssue (Chip Test	ing Center

IVERSITY

Deliverables of TEX-VAL:

- ~20 Tissue chips tested in 4+ years
- All data from testing deposited into the University of Pittsburgh MPS-Db
- Detailed protocols for technology transfer and experiments (also in U-Pitt MPS-Db)
- Detailed descriptions of all phenotypic endpoints and guidance for their interpretation
- List of all equipment necessary for use of each MPS (*e.g.*, syringe pumps vs specialized equipment)
- Detailed description of the experimental throughput for each tested MPS

TEX-VAL

 Publications and reports describing the outcome of testing and comparison between 3D and 2D versions

Challenges:

- Developers sometimes are not ready and/or willing to test their devices in another lab
- The quality of the non-commercial MPS devices
- Poor quality of the cells that are used in the MPS devices
- Lack of immediate availability of the necessary cells and/or cell culture media
- Technical challenges associated with the complexity of some tissue chip models

Opportunities:

- Developers work to improve/streamline MPS
- End-users are very engaged and supportive of independent testing of MPS before "onboarding"
- The regulatory agencies have begun developing internal capacity in MPS research

How does the "Consortium" work?

Kick-off Face-to-Face brainstorming session:

All members came in with the "ask" for the Consortium

February 12, 2020 Washington, DC (ACC)

- List of models of interest to ALL members
- Platforms for consideration (commercial vs academic)
- Cell sources
- Basic parameters that should be replicated – "context of use"

- Experiments

 on each model:
 lab-based or
 "kitchen science"
- 2. Data deposit into MPS-Db

Monthly webinars with **ALL** members to discuss results and next steps

"On-demand" small group meetings to refine detailed experiments

Consortium members decide on the suitability of each model to their "context(s) of use"

TEX-VAL staff will assist members with platform onboarding and provide all necessary SOPs and other information

Tissue Chips in decision-making: An end-user's perspective

- The MPS technology is very useful and promising and bioengineering research and development need support
- The applications of "tissue chips" in the real world will be highly "fit for purpose"
- The developers need to appreciate the need for portability, as well as reasonable "ease of use" and "cost" for their devices

TEX-VAL

pha	armaceutical companies for models being evaluated
Du	ration
- Se	et up time including cells
- V	iability
- A	ctivity/metabolic functionality
Sys	stem
- C	apacity
- M	faintenance level
- T	hroughput
- SI	pace requirements
- E	quipment requirements
- M	faterial properties (compound binding)
- L	evel of training/expertise required
Ab	ilities
- S:	ampling
- F)	requency (some systems do not allow for daily sampling)
- T	ype (liquid, histology)
- Ir	naging
- In	ı situ
Tes	sting parameters
- C	ell sourcing including commercial versus non-commercial
- M	ledia sourcing including commercial versus non-commercial
- R	eproducibility level
- C	omparisons
- 21	D systems
- In	i vivo models
- B	aseline function assays
- T	oxicity assays
- A	ppropriate positive/negative controls
Re	strictions
- It	1 house only
- L	imited cell types
Bu	siness model
- F	or customer use
- C	ontractual (in house only)

Tissue Chips are *already* in use for internal portfolio decision-making by Pharma

MPS-based organ/tissue model	No. of cases	Area of use (drug development phase)	MPS- supplier	End user	Reference (if available)
Blood vessel, vasculature	5	Target identification, validation and compound selection	AIST	Daiichi-Sankyo	Satoh et al., 2016
		Discovery (scemented et	Mimetas	Galapagos	
		Systems toxicology for consumer products	Mimetas	Philip Morris	Poussin et al.,2020
		inentification	Mimetas	undisclosed	(1)
		Target identification and validation	Mimetas	NovoNordisk	-
Bone marrow	4	Preclinical safety	TissUse	AstraZeneca	Sieber et al., 2018
		Preclinical safety	Emulate	AstraZeneca	Chou et al., 2018
		Preclinical safety Cad	TissUse	Roche	-
		Preclinical satety	TissUse	Bayer	(T)
Gut epithelium	4	DOD GIANNZGILLOIN	Mimetas	Galapagos	Beaurivage et al., 2019
		Discovery	Mimetas	Roche	-
		Clinical development	Mimetas	Roche	-
		Preclinical safety	Emulate	Roche	-
Lung	3	Discovery (alveolus)	Wyss	undisclosed	Huh et al., 2012
		Drug efficacy (epithelium)	Wyss	Pfizer, Merck USA	Benam et al., 2016b
_		Preclin cal Sac CINICA	Emulate	Roche	
Liver	2	Pharmacological and toxicological effects	Emulate	AstraZeneca	Foster et al., 2019
	100	Preclinical same session of species (rat, dog & human)	Emulate	J&J, AstraZeneca	Jang et al., 2019
Ocular compartment	1	Discovery	Fh IGB / EKUT	Roche	Achberger et al., 2019
Kidney epithelium	1	Pharm Port Card charme Cay	Mimetas	undisclosed	Vormann et al., 2018
Liver-Pancreas	1	Target validation / identification	TissUse	AstraZeneca	Bauer et al., 2017
Liver-Thyroid	1	Preclinical a trig - a sea man of species-specificity (ranano hum) n)	TissUse	Bayer	Kühnlenz et al., 2019
Skin-Tumor	1	Preclinical safety & efficacy	TissUse	Bayer	Hübner et al., 2019

Marx et al., ALTEX 37(3):364-394, 2020. doi: 10.14573/altex.2001241

US Society of Toxicology urges EPA to be flexible over testing

19 September 2019

Concerns over 2035 deadline for ending mammalian testing

...Some academics also gave a note of caution. "As a toxicologist who is passionate about replacement of animal testing with cell-based models, I welcome this announcement," said Ivan Rusyn, director of the Superfund Research Center at Texas A&M University. "However, a clear plan and milestones for how this vision will be implemented by the agency is needed to ensure that solid foundation exist for replacement of certain animal tests with alternative methods and that human health protection is not diluted by reducing the regulatory requirements on chemical safety," he told Chemical Watch.

- Are we ready to stop using animals for evaluating safety of the regulated chemicals? NOT immediately
- When will we be ready to stop using animals for evaluating safety of the regulated chemicals? NOT soon
- Are MPS useful "new approach methodologies" (NAMs)? YES!! but "fit(s) for purpose" needs to defined
- Why not use "human on a chip" to replace animal tests? A combination of PK modeling and organotypic model-derived hazard, mechanistic, kinetic and other data is more likely to be of "value"
- How can the efforts to reduce/eliminate animal testing benefit from the MPS? The end-users
 (government or companies) shall continue supporting targeted research on the <u>application</u> of these
 models to their purpose(s) while developing intramural capacity in the use of these models

Tissue Chip Testing Experiments:

Courtney SakolishLeoncio VergaraYizhong LiuClifford Stephan

Analytical Chemistry Experiments:

Yu-Syuan Luo Kyle Ferguson Alan Valdiviezo

In Vitro Experiments & Modeling:

Fabian GrimmSarah BurnettZunwei ChenAlex BlanchetteWilliam KlarenNan-Hung Hsieh

Faculty Collaborations:

Weihsueh Chiu Fred Wright Arum Han

Special Thanks to Tissue Chip Developers:

University of Washington: Elijah Weber, Edward Kelly, and Jonathan Himmelfarb **Duke University:** Xu Zhang and George Truskey

University of Pittsburgh: Celeste Reese, Richard DeBiasio, Larry Vernetti and Lans Taylor

Baylor College of Medicine: Xi-Lei Zeng and Mary Estes

Johns Hopkins University: Mark Donowitz

Columbia University: Zongyou Guo, Yanne Doucet, Alan Chramiec, Sue Halligan, Angela Christiano and Gordana Vunjak-Novakovic

UC-Berkeley: Nikhil Deveshwar, Nathaniel Huebsch, Felipe Montiel, Brian Siemons and Kevin Healy

UC-Irvine: Duc Phan, Hugh Bender and Chris Hughes

Vanderbilt University: Jackie Brown and John Wikswo

University of Washington: Tomoki Imaoka, Edward Kelly, and Jonathan Himmelfarb
University of Pittsburgh: Celeste Reese, Richard DeBiasio, Larry Vernetti and Lans Taylor
University of Pittsburgh: Zhong Li, Hang Lin
University of Rochester: Azmeer Sharipol, Lindsay Piraino, Hitoshi Uchida, Yuanhui Song, Catherine Ovitt, Lisa DeLouise and Danielle Benoit

University of Pennsylvania: Andrei Georgescu and Dan Huh

UC-Davis: Bhupinder Shergill, Sergey Yechikov, Steven George

Duke University: Xu Zhang and George Truskey

TEX-VAL

