

Animal Drugs, Animal Studies, and MicroPhysiological Systems

Kevin Greenlees, PhD, DABT FDA Center for Veterinary Medicine

Global trends of organoid and organ-on-a chip in the past decade: a bibliometric and comparative study. Wang et al. 2019. Tissue Engineering Part A vol 26 no 11-12.

FIG. 6. Mapping and clustering keywords in co-occurrence networks based on documents in the periods of 2009–2013 and 2014–2018. (A, B) Keyword co-occurrence networks related to organoid and organ-on-a-chip, respectively.

Outline

- How are animal studies used for evaluation of animal drugs?
- Highlight of some unique considerations.
- How can MPS inform animal drug evaluation?

TARGET ANIMAL STUDIES

Target Animal Studies

- Target animal effectiveness (substantial evidence of effectiveness).
 - a. Clinical studies of effectiveness (Field trials).

Target Animal Studies

- Target animal safety

 (all studies reasonable; evaluated by experts qualified by training and experience).
 - a. Margin of safety studies.
 - b. Target animal safety.

HUMAN SAFETY STUDIES

Human Food Safety

(Reasonable certainty of no harm)

- 1. Toxicological studies (typically in animals) to establish a human health protective value (e.g., acceptable daily intake (ADI) or acute reference dose (aRFD).
- 2. Animal studies to determine the nature, deposition, and depletion of residues in edible tissues of the treated target animal.

Human Food Safety

(Reasonable certainty of no harm)

- 1. Comparative metabolism studies to determine the relevance of the toxicological study to the residues in edible tissues.
- 2. Animal studies to inform risk of antimicrobial resistance.
- 3. Animal studies to inform potential exposure to human gastrointestinal microbiome to antimicrobial residues.

Human User Safety

- 1. Limited studies to inform potential exposure (e.g., dermal absorption, inhalation) and toxicity.
- 2. Qualitative risk assessment for labeling.

Some unique considerations

- Multiple species; multiple breeds within species:
 - 7 major animal species many minor species,
 - 195 breeds of dogs, 44 breeds of cats.
- Widely different biological physiological systems:
 - Homeotherms (cattle, pigs, poultry, dogs, cats) to poikilotherms (fish, shellfish, reptiles).
 - Ruminants (cattle, sheep) to monogastric non-ruminants (pigs, dogs, cats, horses).
- Wide range in size (mass):
 - pheasants to dogs to beef cattle to elephants.

Some unique considerations

- Very limited toxicity data in humans to inform human safety considerations (safety to the human consumer, safety to the human treating the animal).
- Need to establish residue exposures safe for the human consumer (similar to the considerations for additives for human foods).
- Very heavy reliance on extrapolation from in-vitro and in-vivo (and in-silico) non-human models.

HOW CAN MPS INFORM ANIMAL DRUG EVALUATION?

Start with the goal in mind..

- What are the regulatory questions being asked?
- What is the target population?
 - For veterinary drugs, this can be:
 - the treated animal,
 - the human exposed while treating, working, or living with the animal,
 - the human consumer of foods derived from the treated animal.
- Is the model intended to provide a definitive data for a decision, or offer additional data to inform a decision?

Some areas of promise

- Organoid/organ-on-a-chip models can
 - inform adverse outcome pathways whether for target animal or human safety;
 - offer insight into important breed differences for companion animals;
 - offer multiple organ-on-a-chip models for extrapolation across breed especially for target animal safety (dog on a chip concept);
 - offer insight on the impact of inflammation and disease on drug uptake and depletion for target animal safety an human food safety;
 - develop human gastrointestinal tract/microbiome model to inform impact of antimicrobial animal drug residues on the human gastrointestinal microbiome.

An example...

 Regulatory requirement to establish a human health protective level for residues of antimicrobial veterinary drugs based on concern for impact on the human gastrointestinal microbiome.

An example...

- Internationally harmonized guidelines (VICH GL36/FDA GFI 159) clearly outline the minimal data requirements recommended to estimate a human health protective value.
- Approaches are provided to estimate a microbiological Acceptable Daily (mADI) Intake for residues of the antimicrobial in human food.
- Currently recommends use of 10 bacterial species from 10 human subjects evaluated using:
 - MIC data from traditional plate microbiology,
 - MIC and population data using invitro flask-culture,
 - MIC and population data from mice with humanized gut microbiome.

An example...

- FDA is currently collaborating with an industry partner to develop a model using a human intestinal-organ-on-a-chip, incorporating multispecies bacterial population.
- Goal to provide a model more representative of the human gastrointestinal microbiome for the estimation of the mADI.

Thank you

