

The role of MPS in addressing the 3Rs in Zoonoses research involving protected species

Dr. Simon Funnell Scientific Leader National Infection Service PHE Microphysiological Systems (MPS): Bridging Human and Animal Research 19th – 20th January 2021

Additional approach (MPS) Organ cultures from Human, exotic and NHP

PHE's propagation in Vero/hSLAM

Public Health England

Passage History: Passage 4: PHE Porton (ASL415)	
Grown from P3 into Vero/hSLAM cells (ECACC catalogue: 04091501)	
MOI of infection approx. 0.0005	
Passage 3: PHE Porton (ASL406)	
Grown from P2 into Vero/hSLAM cells (ECACC catalogue: 04091501)	
MOI of infection approx. 0.0005	
Passage 2: PHE Porton (ASL322)	_
Grown from P1 into Vero/hSLAM cells (ECACC catalogue: 04091501)	
Passage 1: Australian lab details (ASL320)	
Donation from the Peter Doherty Institute;	
500µl vial labelled "2019-nCoV (Victoria/1/2020) P1 Ex-Vero 30/1/2020".	
Isolated from patient on Vero/hSLAM cells.	
Passage 0: Human origin	
Nasopharangeal swab isolated in Vero/hSLAM.	
See Caly, L et al. 2020. Isolation and rapid sharing of the 2019 novel coronavirus	
(SARS-CoV-2) from the first patient diagnosed with COVID-19 in Australia. Med J	
Aust. doi: 10.5694/mja2.50569.	
From 58 year-old male from Wuhan, China felt unwell on returning to Melbourne	
on 19th Jan 2020. Developed fever on 20th Jan and a cough with sputum	
production on 23rd Jan. Admitted to Monash Medical Centre 24th Jan.	
No contact with live food markets, hospitals or known COVID-19 cases.	
Patient recovered and was discharged from hospital on 7th February 2020.	
Converse sublished: ConBank Assession MT007E44 4, CICAID EDLICI, 400044	
Sequence published: GenBank Accession MT007544.1, GISAID EPI_ISL_406844	Ł
Medical History:	
Diabetes Mellitus – type 2 Provinue amaker – accord 4 years prior	
Previous smoker – ceased 4 years prior.	

Transmission Electron Micrograph of material (negative staining)

Credit: Dohery Inst., Dr. K. Bewley, MIG team and PHE EM unit

SARS-CoV-2 Vic 01 plaque morphology differences

Dilution of virus in Vero E6s

Small, well defined colonies Better for titration purposes Dilution of virus in Vero/hSLAMs

Large doughnut morphology

Plasmid vector (pCXN2) Neomycin resistance gene and Expression plasmid (pcAG-hSLAM) encoding human signalling lymphocyte activation molecule

Vero E6 can increase ΔFCS

- Problem identified in February 2020
- WHO working group set up September
- Subject of WHO models call 8th October 2020
- Rapid communication being drafted
- There is a risk in propagation in Vero E6
- Mitigate by sequencing or Vero/hSLAMs
- Human cells may be beneficial ongoing studies

ΔFCS less disease in hamsters

Vero cells – a closer look

Available globally

Easy to grow

Widely used for viral propagation

Widely used for plaque assays due to CPE

Chromosome 12 deletion Loss of ability to produce Type 1 IFN Loss of some element of regulation Kidney cell origin

kirocebus aethiop

(black lines). The blue, green, and orange dots represent the coverage values in $1 \times , 2 \times ,$ and $3 \times$ regions, respectively. (C) The large deletion and LOH regions on *Chlorocebus sabaeus* chromosome 12. The red and blue points represent average heterozygosity (the number of heterozygous SNVs per bp) and genome coverage of paired-end reads in 1-Mb-size windows, respectively. The predicted homozygous deletion regions and LOH regions are shown as yellow and black bars on the plot area, respectively.

Osada et al., DNA Res 2014

Cells for propagation?

Cell types	Advantage	Disadvantage
Vero E6 Vero/hSLAM	Widely used, easy to grow Restrict drift and shift Good titres at harvest	Can permit drift and shift Not widely used + addition
Calu3 CaCo3	Restrict shift and drift Restrict shift and drift	Lower titre, slow growth Lower titre, slow growth
Human "tissue"	Better simulation of in vivo	Not easy to set up

Which cells are best for infection models?

Cell types	Advantage	Disadvantage
Vero E6	Widely used	Not OK for HCQ or other May give wrong outcome
Vero/hSLAM Calu3 CaCo3	Reduces shift and drift Reduces shift and drift Reduces shift and drift	Not widely used + addition Not widely used Not widely used
Human epi cells And MPSs	Very good simulation of <i>in vivo</i> May replace some <i>in vivo</i> in time	More demanding

Emerging preclinical evidence does not support broad use of hydroxychloroquine in COVID-19 patients

S. G. P. Funnell, W. E. Dowling, C. Muñoz-Fontela, P.-S. Gsell, D. E. Ingber, G. A. Hamilton, L. Delang, J. Rocha-Pereira, S. Kaptein, K. H. Dallmeier, J. Neyts K. Rosenke, E. de Wit, H. Feldmann, P. Maisonnasse, R. Le Grand, M. B. Frieman & C. M. Coleman Nature Communications **doi:** https://doi.org/10.1038/s41467-020-17907-w

Preclinical evaluation of Imatinib does not support its use as an antiviral drug against SARS-CoV-2

Franck Touret, Jean-Sélim Driouich, Maxime Cochin, Paul Rémi Petit, Magali Gilles, Karine Barthélémy, Grégory Moureau, Denis Malvy, Caroline Solas, Xavier de Lamballerie, Antoine Nougairède **doi:** https://doi.org/10.1101/2020.11.17.386904

Preclinical evidence on Hyroxychloroquine

Authors	Source	Test item	Test system	Dose	Antiviral	Symptomatic
Frieman <i>et al</i>	NIH	CQ HCQ	Vero cells + SARS-CoV		Yes	Mild effect
Frieman <i>et al</i>	NIH	CQ HCQ	Mice + MA SARS-CoV	1.0E+05 PFU	None	Yes
Kaptein <i>et al</i>	KU Leuven	HCQ	Hamster + SARS-CoV-2	2.0E+06 TCID ₅₀	None	None
Rosenke <i>et al</i>	RML NIAID	HCQ	Hamster + SARS-CoV-2	1.0E+04 TCID ₅₀	None	None
Massonaise et al	Inserm	HCQ	Cyno + SARS-CoV-2	1.0E+06 PFU	None	None
Minster <i>et al</i> Rosenke <i>et al</i>	RML NIAID	HCQ	Rhesus + SARS-CoV-2	2.8E+06 TCID ₅₀	None	None
Ingber <i>et al</i> .	Wyss Inst	HCQ	Human respirator Emulate + Pseudovirus	-	None	None
Massonaise et al	INSERM	HCQ	Human respiratory Mucilair™+SARS-CoV-2	6.3E+06 to 4.3E+07 TCID ₅₀	None	None

Which cells are best for infection models?

Cell types	Advantage	Disadvantage
Vero E6	Widely used	Not OK for HCQ or other May give wrong outcome
Vero/hSLAM Calu3 CaCo3	Reduces shift and drift Reduces shift and drift Reduces shift and drift	Not widely used + addition Not widely used Not widely used
Human epi cells And MPSs * Nev	Very good simulation of <i>in vivo</i> May replace some <i>in vivo</i> in time v technology is "democratising"	

URT "Shag pile carpet" surface

Figure 6.8 Transmission electron micrograph of human organ cultures Magnification 6,000x Magnification 3,000x Magnification 4,500x A, Control uninfected tissue; B, Tissue infected with B. pertussis strainTn99; C, Tissue infected with B. pertussis W28

Microfluids (Organ on a chip)

In vitro infection using human respiratory organ-on-a-chip technology

- Extracellular matrix and cell interactions
- Cell shape and cytoarchitecture
- Tissue-tissue interactions
- Mechanical forces

Public Health

England

XXX

- Dynamic system flow
- · Resident or circulating immune cells

Refinement of in vitro models of infection

Longlong *et al.*, 2020; https://doi.org/10.1101/2020.04.13.039917

"Lab ready" solutions

Overview of SARS-CoV-2 modelling landscape

Host species	Disease
Mouse	Mild
Hamster	Moderate
Ferret	Mild
Mink	Moderate
Pigs	Resistant
Cats	Moderate
Marmosets	Mild
African green NHP	Mild
Rhesus macaque	Mild
Cynomolgus macaque	Mild
Complex organ culture	Mild

Main metric

Viral shedding Viral shedding and weight loss Viral shedding (URT focus) pathology Unknown Not applicable Viral shedding Viral shedding Viral shedding (extra), imaging, LRT pathology Viral shedding, imaging, LRT pathology Viral shedding, imaging, LRT pathology Viral shedding, LRT pathology

Resource requirements

Traditional

Breeding staff and facility Screening and surveillance Considerable Ethics burden Planning Surge capacity limitations Infrastructure Large ABSL3 facility Large Staff resource need

Microphysiological systems

Initial source materials Frozen seed stocks Limited ethical requirements Fast set up Scale up possible Capital equipment **BSL3** laboratory Smaller staff requirement

Top channel – Intestinal epithelial cells derived from intestinal organoids **Bottom channel** – Intestinal microvascular endothelium (HIMEC)

Unanswered questions

Pre-clinical

Is there an unchartered animal reservoir? How do MPS outcomes compare with *in vivo* outcomes? Do new variants vary in their species specificity? Can mice, bats, rhesus and cynos be infected with B.1.1.7? Can mice, bats, rhesus and cynos be infected with "new variants"? Are there organ specific tropisms & differences across species?

Clinical

What is the mechanism of severe disease onset?

Is pre-existing N protein immunity a risk factor?

What causes the cytokine storm?

Why are males more susceptible to severe disease?

Is E protein an important virulence factor?

Could E protein ion channel inhibitors be therapeutic?

Cell "lines" can deceive

Pre-screening could be refined

MPS Technology has enabled multiple tissue differentiation in vitro

MPSs support in vivo outcomes

Vero E6 assessments should/can be replaced

Multispecies (eg Bat and primate) susceptibility and organ tropism possible in vitro

Animal usage could be reduced