Capmatinib in **METex14 NSCLC**

Monica Giovannini, MD Clinical Development Head Oncology, Global Drug Development - Novartis

Capmatinib: a selective MET inhibitor

- Capmatinib is an oral, ATP-competitive, highly potent, selective, and reversible inhibitor of MET kinase¹
 - > 10,000-fold selectivity for MET receptor kinase when assessed against a panel of 55 other human kinases^{1,2}
 - Crosses the blood-brain barrier showing preliminary brain activity^{3,4}
 - Potent blockade of MET activation in cell-based functional and biochemical assays, as well as in in vivo models
- Compared with other agents, capmatinib is the most potent inhibitor against METex14⁵

	Capmatinib	Savolitinib	Tepotinib	Cabozantinib	Crizotinib
IC ₅₀ (nM)	0.6	2.1	3.0	7.8	22.5

1. Liu X, et al. Clin Cancer Res. 2011;17:7127-38. 2. Lara MS, et al. Clin Lung Cancer. 2017;18:281-5. 3. Wu YL, et al. Presented at WCLC 2017; abstract P1.01-97. 4. Wu Y-L, et al. J Clin Oncol. 2018;36:3101-9. 5. Fujino T, et al. Presented at WCLC 2018; abstract P1.13-41. 6. Salgia R. Mol Cancer Ther. 2017;16:555-65.

HN

Capmatinib (INC280)⁶

Patients with *MET* Exon 14 Mutations account for 3% of NSCLC and face poor prognosis

Unique Patient Population Patients with METex14 are older, with a median age of 71 years, and are predominately female. Approximately 40% have never smoked¹

Patients with METex14 have a high incidence of multi- focal disease and often have brain, bone, and liver metastases².

Limited Survival Benefit METex14 was found to be an independent prognostic factor that predicted worse survival compared with patients without MET alteration. ^{3, 4, 5}

- 1. Ali A, et al. Curr Oncol. 2013;20(4):e300-306.
- 2. Subba R. Digumarthy, Dexter P. Mendoza, Eric W. Zhang, Jochen K. Lennerz, and Rebecca S. Heist. Clinicopathologic and Imaging Features of Non-Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations Cancers. 2019 Dec; 11(12): 2033 Tong
- 3. JH, Yeung SF, Chan AWH, et al. Clin Cancer Res. 2016;22(12):3048-3056
- 4. Yeung SF, Tong JHM, Law PPW, et al. J Thorac Oncol. 2015;10(9):1292-1300.
- 5. Katalinic D, Aleric I, Vcev A. MET exon 14 splicing mutation and its correlation with clinicopathological features in subjects with non-small cell lung cancer. Poster presented at: ESMO 2018 Congress; October 20, 2018; Munich, Germany.

GEOMETRY mono-1 (INC280A2201): study design

 Multicenter, open-label, phase 2 trial evaluating the efficacy and safety of single-agent capmatinib in adults

^a Patients were allocated based on MET central molecular prescreening.

^b Cohorts 1b, 2, and 3 included patients with lower amplifications; these cohorts were closed for futility but continue to be evaluated for safety within the full data set.

Wolf J, et al. N Engl J M ed. 2020;383:944-57.

U NOVARTIS |

GEOMETRY mono-1 (INC280A2201): Participating Countries

GEOMETRY mono-1 (INC280A2201): Cohort 4 and Cohort **5b** – baseline patient characteristics

		METex14			
Characteristic		Pretreated Cohort 4 (N = 69)	Treatment-naive Cohort 5b (N = 28)		
Age	Median (range), years	71 (49–90)	71 (57–86)		
	≥ 65 years, n (%)	55 (79.7)	25 (89.3)		
Female, n (%)		40 (58.0)	18 (64.3)		
ECOG PS, n (%)	0	16 (23.2)	7 (25.0)		
	≥ 1	53 (76.8)ª	21 (75.0)		
Smoking history, n (%)	Never smoker	40 (58.0)	18 (64.3)		
	Ex-smoker	27 (39.1)	9 (32.1)		
	Current smoker	2 (2.9)	1 (3.6)		
Histology, n (%)	Adenocarcinoma	53 (76.8)	25 (89.3)		
	Squamous cell carcinoma	6 (8.7)	2 (7.1)		
	Large cell carcinoma	1 (1.4)	0		
	Other	9 (13.0)	1 (3.6)		
Brain metastases at baseline ^b , n (%)		11 (15.9)	3 (10.7)		
Concurrent <i>MET</i> amplification, n (%)	GCN < 4	18 (26.1)	4 (14.3)		
	GCN ≥ 4 and < 6	15 (21.7)	10 (35.7)		
	GCN ≥ 6 and < 10	17 (24.6)	3 (10.7)		
	GCN ≥ 10	11 (15.9)	4 (14.3)		
	Missing	8 (11.6)	7 (25.0)		

Data cut-off date: 6 January 2020.

^a One patient in cohort 4, who had undergone randomization in error (protocol deviation), had an ECOG performance-statusscore of 2.

^b For METex 14 patients, 12 were identified from their medical history and 2 identified at baseline CT scan.

Wolf J, et al. N Engl J M ed. 2020;383:944-57.

GEOMETRY mono-1 (INC280A2201): Cohort 4 and Cohort 5b - best overall response

	Cohort 4 METex14-pretreated patients			METex	Cohort 5b METex14-treatment-naive patients			
METex14					METe	x14		
	Pretreated Cohort 4 (N = 69)				Treatment-nai (N =	Treatment-naive Cohort 5b (N = 28)		
	BIRC	Investigator			BIRC	Investigator		
ORR, % (95% CI)	40.6 (28.9–53.1)	43.5 (31.6–56.0)	,	ORR, % (95% CI)	67.9 (47.6–84.1)	60.7 (40.6–78.5)		
DCR, % (95% CI)	78.3 (66.7–87.3)	76.8 (65.1–86.1))	DCR, % (95% CI)	96.4 (81.7–99.9)	96.4 (81.7–99.9)		

GEOMETRY mono-1 (INC280A2201): Cohort 4 and Cohort 5b – duration of response per BIRC

• Median DoR was 9.7 months in Cohort 4 and 12.6 months in Cohort 5b^{1,2}

UNOVARTIS

Median DoR per investigator was 8.31 months (95% CI 5.45–12.06) in Cohort 4 and 13.83 months (95% CI 4.27–25.33) in Cohort 5b.

1. Wolf J, et al. Oral presentation at ASCO 2019. J Clin Oncol. 2019;37(Suppl 15): abstract 9004. 2. Wolf J, et al. N Engl J M ed. 2020;383:944-57.

Reimagining Medicine

GEOMETRY mono-1 (INC280A2201): Cohort 4 and Cohort 5b – confirmed activity against brain metastases

- 13 evaluable patients with brain metastases at baseline by BIRC (mean 3.3 lesions per patient [range 1–8])¹
- 54% (N = 7/13) had an intracranial response^{1,a}
- Intracranial responses were as fast as responses in extracranial lesions¹
- 12/13 patients had intracranial disease control^{1,2}

- 73-year-old female patient with multiple brain metastases treated with WBRT and pembrolizumab (PD-L1 85%)^{1,2}
- Progression after 3 cycles, both systemic and intracranial (3 new metastases and progression of pre-existing lesions)
- Feb 2018: start of capmatinib^{1,2}
- Brain response since first CT scan; complete resolution of all lesions by second post-baseline CT scan at 12 weeks^{1,2}
- Systemic PR; as of October 2020, patient is still ongoing and in response after > 33 months²

CT images courtesy Dr Johan Vansteenkiste (University Hospitals KU Leuven, Leuven, Belgium), informed consent by the patient. 1. Garon EB, et al. Oral presentation at the AACR 2020 (virtual meeting); abstract CT082.2. Wolf J, et al. N Engl J M ed. 2020;383:944-57.

GEOMETRY mono-1 (INC280A2201): efficacy in Cohort 6

- Cohort 6 further confirms the efficacy of capmatinib in 2L pretreated patients with *MET*ex14 NSCLC (without fasting restrictions)
 - BIRC-assessed ORR 48.4% (95% CI 30.2-66.9)

U NOVARTIS

Reimagining Medicine

GEOMETRY mono-1: safety

- Safety was assessed in all patients treated across study cohorts (N = 364)
 - The majority of AEs were grade 1 or 2
 - Most AEs were predictable and manageable with appropriate dose adjustments
 - Peripheral edema, gastrointestinal symptoms, and increased blood creatinine were the most frequently reported treatment-related AEs
- Safety profile under both fasting and non-fasting conditions was consistently manageable
 - There was a trend towards fewer gastrointestinal AEs of any grade when capmatinib was taken without fasting restrictions

GEOMETRY mono-1 (INC280A2201): treatment-related adverse events across different cohorts

	METex14				MET amplification					
Treatment-related AE, n (%)	Pretro Coh (N =	eated ort4 :69)	Treatme Coho (N =	ent-naive ort 5b : 28)	Pretre Coho GCN (N =	eated ort 1a ≥10 ∈ 69)	Treatme Coho GCN (N =	nt-naive ort 5a ≥10 15)	All cc (N =	hortsª 364)
Grade	Any	3/4	Any	3/4	Any	3/4	Any	3/4	Any	3/4
At least one event	60 (87.0)	35 (50.7)	27 (96.4)	16 (57.1)	60 (87.0)	27 (39.1)	14 (93.3)	8 (53.3)	312 (85.7)	137 (37.6)
Reported in≥10% of patients (any	cohort)									
Peripheral edema	31 (44.9)	10 (14.5)	19 (67.9)	2 (7.1)	26 (37.7)	5 (7.2)	11 (73.3)	3 (20.0)	156 (42.9)	30 (8.2)
Nausea	26 (37.7)	0	12 (42.9)	0	25 (36.2)	3 (4.3)	6 (40.0)	0	125 (34.3)	6 (1.6)
Vomiting	14 (20.3)	0	5 (17.9)	0	16 (23.2)	4 (5.8)	2 (13.3)	0	68 (18.7)	7 (1.9)
Blood creatinine \uparrow	18 (26.1)	0	7 (25.0)	0	14 (20.3)	0	3 (20.0)	0	67 (18.4)	0
Fatigue	10 (14.5)	4 (5.8)	2 (7.1)	1 (3.6)	8 (11.6)	0	2 (13.3)	1 (6.7)	50 (13.7)	10 (2.7)
Appetite↓	10 (14.5)	1 (1.4)	5 (17.9)	0	8 (11.6)	1 (1.4)	2 (13.3)	0	45 (12.4)	3 (0.8)
Diarrhea	9 (13.0)	0	3 (10.7)	0	14 (20.3)	1 (1.4)	0	0	40 (11.0)	1 (0.3)
ALT↑	6 (8.7)	5 (7.2)	4 (14.3)	2 (7.1)	9 (13.0)	5 (7.2)	3 (20.0)	2 (13.3)	33 (9.1)	20 (5.5)
Amylase↑	6 (8.7)	3 (4.3)	2 (7.1)	2 (7.1)	9 (13.0)	2 (2.9)	3 (20.0)	1 (6.7)	29 (8.0)	11 (3.0)
Lipase↑	7 (10.1)	6 (8.7)	4 (14.3)	2 (7.1)	5 (7.2)	3 (4.3)	1 (6.7)	0	27 (7.4)	19 (5.2)
Pruritus	6 (8.7)	0	1 (3.6)	0	5 (7.2)	0	2 (13.3)	0	24 (6.6)	0
AST ↑	5 (7.2)	2 (2.9)	2 (7.1)	1 (3.6)	6 (8.7)	2 (2.9)	3 (20.0)	1 (6.7)	23 (6.3)	9 (2.5)
Constipation	5 (7.2)	1 (1.4)	3 (10.7)	0	3 (4.3)	0	1 (6.7)	0	20 (5.5)	2 (0.5)
Serious AEs	13 (18.8)	9 (13.0)	4 (14.3)	4 (14.3)	10 (14.5)	8 (11.6)	4 (26.7)	2 (13.3)	48 (13.2)	34 (9.3)
AEs leading to discontinuation	11 (15.9)	6 (8.7)	4 (14.3)	3 (10.7)	7 (10.1)	5 (7.2)	2 (13.3)	2 (13.3)	39 (10.7)	22 (6.0)

GEOMETRY mono-1 (INC280A2201): conclusions

- Patients with advanced NSCLC harboring *MET*ex14 are older compared to other molecularly unselected NSCLC patients, with a median age of 71 years
 - This was not expected at the beginning of the study and the usual site selection footprint was applied with no further adjustments for identifying METex14 NSCLC pts
- >68% of patients with lung cancer in the US are >65 years at diagnosis therefore oncologist treating NSCLC are experienced in managing such patients and did not require special training or procedures during the conduct of the study
- Capmatinib demonstrated clinically meaningful efficacy in patients with advanced NSCLC harboring METex14, and efficacy was also documented in patients with brain metastases

U NOVARTIS

• Capmatinib was well tolerated with a manageable safety profile with no deterioration in the more elderly MET ex14 cohorts

Reimagining Medicine