Acute Myeloid Leukemia Trials in Older Adults

Richard M Stone, MD Chair, Aliance Leukemia Committee Chief of Staff Director, Translational Research, Leukemia Division, Medical Oncology Dana-Farber Cancer Institute Professor of Medicine Harvard Medical School Boston, MA

Disclosures- Richard M. Stone, MD

- Consulting relationships past three years:
 - AbbVie*; Actinium, Agios*; Amgen; Argenix (DSMB); Arog*; Astellas; AztraZenaca; BerGenBio; Biolinerx, Celgene (includes DSMB and steering committee);Daiici-Sanko; Elevate Bio; Fujifilm; GemoAb; Janssen; Jazz; Juno; Lilly* (only clin res support); Macrogenics; Novartis*; Ortsuka; Pfizer; Roche; Stemline; Syndax; Syntrix (DSMB only); Syros; Takeda (DSMB), Trovagene
 - * denotes support to my institution for clinical trials on which I was local PI
- Securities, employment, promotional activities, intellectual property, gifts, grants
 - None

AML: What is it and how did it get there?

- Unbridled proliferation of hematopoietic stem cells (myeloid lineage) resulting in marrow failure and patient death unless successfully treated
- Risk factors: AGE, prior chemo for other cancers, ionizing radiation, industrial solvents (last 3 probably <10% of incidence=15K new US cases annually); unusual but kindreds exist w germ-line mutations in >10 genes

Current Risk Assessment in AML

Key Prognostic Data in AML in 2021

Patient age (FH, bleeding hx; ?Therapy related; ?Prior MDS)

Cytogenetics / fusion mRNA (screen for APL, MLL, Ph+, CBF)

Multiparameter flow

Molecular studies:

• <i>FLT3</i> ITD (internal tandem duplication) mutation	Unfavorable
• NPM1 mutation	Favorable
• CEBPA biallelic mutation	Favorable
• RUNX1, TP53, ASXL1 (? KIT in CBF)	Unfavorable

Of Future Importance: mutation status of IDH1/2, DNMT3A, TET2, etc.

Survival in AML in Age \geq 60 Years (MDACC, 1973-Present, n=1647)

Years

Why Do Older Patients With AML Experience Inferior Outcomes?

- Decreased host tolerance of intensive therapy
 - Impaired hematopoietic stem cell reserve
 - Presence of comorbid diseases
 - Decreased chemotherapy clearance
- Increased resistance of disease to therapy
 - Ratio of favorable (eg, t[8;21]) to unfavorable (eg, -7) cytogenetics is lower than for younger patients
 - Higher expression of drug resistance proteins (eg, PGP)
 - Higher incidence of antecedent hematologic disorders

In Elderly de novo AML, Secondary-Type Mutations Are Associated With Adverse Outcomes

Lindsley RC et al. Blood. 2015;125:1367-1376

Heterogeneity and Hope in Older Adults with AML
– Host Factors: Fitness (Geriatric Assessment [Klepin H et al, J Geriatr Oncol, 2020]), comorbidities, age
– Disease Features: Cytogenetic and Molecular features

 -3 new recently approved drugs based on trials for older adults

- AZA/VEN, upfront age>75, unfit
- CPX-351, upfront, age 60-75, fit
- CC-486 (oral aza), maintenance, age >55, fit

CPX-351

- CPX-351 is a liposomal coformulation of cytarabine and daunorubicin designed to achieve synergistic antileukemia activity
 - 5:1 molar ratio of cytarabine:daunorubicin provides synergistic leukemia cell killing *in vitro*¹
 - In patients, CPX-351 preserved delivery of the 5:1 drug ratio for over 24 hours, with drug exposure maintained for 7 days²
 - Selective uptake of liposomes by bone marrow leukemia cells in xenograft models³

CPX-351 Phase III Study Design

- Randomized, open-label, parallel-arm, standard therapycontrolled
 - 1:1 randomization, enrolled from December 2012 to November 2014
 - Patients with CR or CRi could be considered for allogeneic HCT, based on institutional criteria

Key Eligibility

- Previously untreated
- Ages 60–75 years
- Able to tolerate intensive therapy
- ECOG PS 0-2

Stratifications:

- Therapy-related AML
- AML with history of MDS with and without prior HMA therapy
- AML with history of CMML
- De novo AML with MDS karyotype
- 60–69 years
- 70–75 years

recovery; ECOG PS, Eastern Cooperative Oncology Group performance status; HMA, hypomethylating agents; MDS, myelodysplastic syndrome.

1. World Health Organization. WHO Classification of Tumours of Haematopoitic and Lymphoid Tissues. Swerdlow S et al (ed). Lyon, 10 IRAC Press, 2008.

were alive: CPX-351 (n = 49): 589 days (range: 44-1007); 7+3 (n = 24): 601 days (range: 417-917).

CI, confidence interval; CR, complete response; CRi, CR with incomplete platelet or neutrophil recovery; HSCT, hematopoietic stem cell transplant.

Survival Landmarked from Time of Transplant

- CPX-351 median OS not reached vs 10.25 months for 7+3
 - HR of 0.46 favoring CPX-351 (*P*=0.0046)
 - Cox proportional hazards HR, including transplant as a time-dependent covariate, was 0.51 (95% CI, 0.35–0.75; *P*=0.0007), favoring CPX-351

Lancet et al, ASH 2016

Venetoclax: BCL-2 Selective Inhibitor

BCL-2 overexpression allows cancer cells to evade apoptosis by sequestering pro-apoptotic proteins

Konopleva M, et al. Cancer Discov. 2016. Epub ahead of print. Lin T, et al. ASCO 2016. Abstract 7007.

Azacitidine ± Venetoclax (VIALE-A) Study Design

Eligibility

Inclusion

- Patients with newly diagnosed confirmed AML
- Ineligible for induction therapy defined as <u>either</u>
 - ♦ \geq 75 years of age
 - 18 to 74 years of age with at least one of the co-morbidities:
 - CHF requiring treatment or Ejection Fraction ≤50%
 - Chronic stable angina
 - DLCO $\leq 65\%$ or FEV₁ $\leq 65\%$
 - ECOG 2 or 3

Exclusion

- Prior receipt of any HMA, venetoclax, or chemotherapy for myelodysplastic syndrome
- Favorable risk cytogenetics per NCC
- Active CNS involvement

DiNardo CD et al. NEJM 2020

AZA \pm VEN in AML: Composite Response Rate (CR+CRi)

	No. of treatment cycles, median (range)	Median time to CR/CRi, Months (range)	*CR+CRi by initiation of Cycle 2, n (%)
Aza + Ven (n = 286)	7.0 (1.0 – 30.0)	1.3 (0.6 – 9.9)	124 (43.4)
Aza + Pbo (n = 145)	4.5 (1.0 -26.0)	2.8 (0.8 - 13.2)	11 (7.6)

- -

*CR+CRi rate, CR rate, and CR+CRi by initiation of cycle 2 are statistically significant with P <.001 by CMH test

DiNardo CD et al. NEJM 2020

AZA ± VEN in AML: Overall Survival

DiNardo CD et al. NEJM 2020

16

AZA ± **VEN** in **AML**: Survival by Subgroups

	Aza+Ven n/N(%)	Aza+Pbo n/N(%)		HR [95% Cl] Aza+Ven vs. Aza+Pbo
All Subjects	161/286 (56.3)	109/145 (75.2)	⊢■	0.64 (0.50, 0.82)
Gender				
Female	61/114 (53.5)	41/ 58 (70.7)	⊢_ ∎(0.68 (0.46, 1.02)
Male	100/172 (58.1)	68/ 87 (78.2)	⊢■→	0.62 (0.46, 0.85)
Age (Years)				
< 75	66/112 (58.9)	36/ 58 (62.1)	F = -	0.89(0.59, 1.33)
≥ 75	95/174 (54.6)	73/ 87 (83.9)	⊢ ∎−1	0.54 (0.39, 0.73)
Type of AML				
De Novo	120/214 (56.1)	80/110 (72.7)	F==-1	0.67(0.51, 0.90)
Secondary	41/ 72 (56.9)	29/ 35 (82.9)	F	0.56(0.35, 0.91)
Cytogenetic Risk				
Intermediate	84/182 (46.2)	62/ 89 (69.7)	⊢ ∎1	0.57(0.41, 0.79)
Poor	77/104 (74.0)	47/ 56 (83.9)		0.78(0.54, 1.12)
Molecular Marker				
FLT3	19/ 29 (65.5)	19/ 22 (86.4)	F	0.66(0.35, 1.26)
IDH1	15/ 23 (65.2)	11/ 11 (100.0)	F	0.28(0.12, 0.65)
IDH2	15/ 40 (37.5)	14/ 18 (77.8)	F	0.34(0.16, 0.71)
IDH1/2	29/61 (47.5)	24/ 28 (85.7)	F	0.34 (0.20, 0.60)
TP53	34/38 (89.5)	13/14 (92.9)	F	0.76 (0.40, 1.45)
NPM1	16/27 (59.3)	14/ 17 (82.4)	L	0.73 (0.36, 1.51)
		/		
			Favors Aza+Ven	ors Aza+Pbo
			0.1 1	10

DiNardo CD et al. NEJM 2020

- Oral azacitidine (Oral-AZA [CC-486]):
 - Oral HMA with a distinct PK/PD profile from injectable AZA; the two are not bioequivalent^{1,2}
 - Approved in the United States for continued Tx of adult pts with AML in first CR/CRi post-IC and not able to complete intensive curative therapy (eg, HSCT)³
- Oral dosing allows for extended drug exposure during each Tx cycle to prolong AZA activity^{1,2}

Garcia-Manero et al. *J Clin Oncol.* 2011;29(18):2521–7. 2. Laille et al. *PLoS One.* 2015;10(8):e0135520. 3. ONUREG[®] (azacitidine) tablets [package insert]. Princeton, NJ: Bristol-Myers Squibb Company; Rev. 9/2020. 4. Savona et al. *Am J Hematol.* 2018;93(10):1199–206. 5. Stresemann et al. *Mol Cancer Ther.* 2008;7:2998–3005. 6. Hollenbach et al. *PLoS One.* 2010;5(2):e9001. 7. Scott LJ. *Drugs.* 2016;76(8):889–900. 8. Stresemann C, Lyko F. *Int J Cancer.* 2008;123(1):8–13. 9. Aimiuwu et al. *Blood.* 2012;119(22):5229–38. AML, acute myeloid leukemia; AZA, azacitidine; CR, complete remission; CRi, CR with incomplete blood count recovery; HMA, hypomethylating agent; HSCT, hematopoietic stem cell transplant; IC, intensive chemotherapy; PD, pharmacodynamic; PK, pharmacokinetic; pts, patients; Tx, treatment.

QUAZAR AML-001: Study design and eligibility criteria

International, multicenter, placebo (PBO)-controlled, double-blind, randomized, phase III study of Oral-AZA as maintenance Tx in pts with AML in first remission post-IC

^aBM aspirates were collected every 3 cycles through cycle 24, at cycle 30 and cycle 36, and as clinically indicated thereafter. BM assessments were also performed as clinically indicated. ^bPatients were followed until death, withdrawal of consent, study termination, or loss to follow-up.

AML, acute myeloid leukemia; ANC, absolute neutrophil count; AZA, azacitidine; BM, bone marrow; CMML, chronic myelomonocytic leukemia; CR, complete remission; CRi, CR with incomplete blood count recovery; ECOG PS, Eastern Cooperative Oncology Group performance status; HRQoL, health-related quality of life; HSCT, hematopoietic stem cell transplant; IC, induction chemotherapy; IWG, International Working Group; MDS, myelodysplastic syndromes; PBO, placebo. Wei A, et al , NEJM, 2020.

 Oral-AZA 300 mg QD was associated with significantly improved overall survival (OS) (P = 0.0009) and relapse-free survival (RFS) (P = 0.0001) vs. PBO¹

New RX Algorithm in Older Adults with AML

- FIT, FLT3 mutation (TKD or ITD): 3+7+mido– FIT, CBF: 3+7+GO
- FIT, MRC-related cytogenetics, h/o MDS, prior rx for CA: CPX-351
- -FIT, NOS: 3+7
- -UNFIT, or >75 yo: aza (7d) +venetoclax
- -UNFIT, IDH1 or IDH2 mut: ivo- or enasidenib
- Post CR
 - alloSCT if poss (Devine et al, JCO 2015)
 - Cont low dose rx (Dinardo et al, NEJM 2020)
 - Maint oral aza (Wei, et al, NEJM 2020)

New CTEP/NCTN Approach in Myeloid Malignancies: MyeloMatch

- 3 Working groups: younger AML, older AML, MDS
- 1 Master screening protocol will assign pts based on age, fitness, AML subtype (rapid cytogenetic and molecular screening)
 - MRD-driven endpoints
 - A fit older adult could be assigned to 3+7 +/- drug X (currently X = the E-selectin inhibitor uproleselan) or to CPX351+ mido v novel FLT3 inhib or CPX v aza/ven (adverse risk)
 - An unfit older adult could be assigned to aza/ven+/-IDH inhibitor or aza/ven +/- anti CD47 or Aza/ven+/-TP53 refolding agent

Acknowledgements

- Clinical Team at DFCI:
 - Dan DeAngelo, Martha Wadleigh, Jacqueline Garcia, Goyo Abel, Eric Winer, Marlise Luskin
 - Ilene Galinsky, NP
 - Andriana Penicaud, PA, Mary Girard, PA, Teresa Nguyen, NP, Elizabeth Herrity, DNP
 - BMT Team: Antin, Cutler, Gooptu; Ho, Koreth, Romee, Soiffer
- Scientific Team at Dana-Farber/Harvard Cancer Center
 - Ben Ebert; Andy Lane, Coleman Lindsley, Jim Griffin; Tony Letai, David Weinstock, David Frank, Kim Stegmeir, Donna Neuberg, Tom Look, S Armstrong
- Alliance
 - R Larson, G Marcucci, W Blum, G Uy, G Roboz, J Kolitz, S. Mandrekar, W Stock, J Byrd
- Academic Collaborators
 - Local: D Avigan, J Rosenblatt; P Amrein, A Fathi, A Brunner, T Graubert
 - Worldwide: C Schiffer, T Fischer, H Dohner, C Thiede, and many others.