Nutritional Antioxidants during Pregnancy and Lactation

Corrine Hanson, PhD, RD, LMNT, FAND Medical Nutrition Education, College of Allied Health Professions University of Nebraska Medical Center

I have no conflict of interest to disclose

Oxidative stress

What is it?

An imbalance between the production of various reactive species and the ability of the organisms' natural protective mechanisms to cope with these reactive compounds and prevent adverse events¹

What does it do?

Reactive oxygen species and reactive nitrogen species react in the body and generate radical intermediates of lipids, protein, and nucleic acids that ultimately form the chemical end products of oxidative stress¹

Dietary antioxidants

Food and Nutrition Board, Institute of Medicine Dietary Reference Intakes¹

Definition: A dietary antioxidant is a substance in foods that significantly decreases the adverse effects of reactive oxygen species, reactive nitrogen species, or both on normal physiological function in humans

Criteria:

- The substance must be found in human diets
- The content of the substance has been measured in foods commonly consumed
- The substance decreases the adverse effects of reactive species in vivo in humans

Substances meeting the criteria:

- Vitamin C
- Vitamin E (as α-tocopherol)
- Selenium

Influencers of biochemical reactions involving the oxidative process:

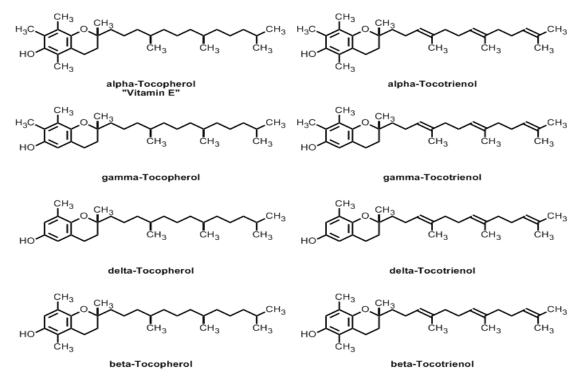
- β-carotene and other carotenoids
 - α-carotene
 - β-cryptoxanthin
 - Lutein
 - Lycopene
 - Zeaxanthin

Dietary Reference Intake Levels for Dietary Antioxidants

	Nutrient	Pregnancy	Lactation	Relationship to serum concentrations	
V	/itamin C	≤18 years: 80 mg/day 18-50 years: 85 mg/day	≤18 years: 80 mg/day 18-50 years: 85 mg/day	Intakes of 90 mg/day = plasma levels of 50 μmol/L, which has been shown to inhibit LDL oxidation	
V	'itamin E	15 mg/day	19 mg/day	Adequate intake is defined as intakes that increase serum levels to at or above 12 µmol/L, (based on prevention of hemolysis)	
S	elenium	60 μg/day	70 μg/day	Levels of intake expected to maximize glutathione peroxidase production	
С	Carotenoids	No recommendations made, current state sufficient strength and consistency to supp time		Serum carotenoid levels are a biomarker of fruit/vegetable intakes	

Correlations of maternal and cord serum carotenoids concentrations in a Midwestern cohort

Serum Level	Correlation Coefficient (r)	p-value
Lutein+zeaxanthin	0.45	<0.0001
β-cryptoxanthin	0.64	<0.0001
Lycopene	0.30	<0.0001
α-carotene	0.70	<0.0001
β-carotene	0.65	<0.0001


Carotenoid status of infants as a proportion of maternal concentrations in a Midwestern cohort

Measure (ug/L)	Maternal Level	Infant Level	Infant % of Mother
Lutein	196.5	30.6	16%
Lycopene	469.0	21.9	5%
α -carotene	53.8	4.7	8%
β-carotene	214.9	13.5	6%
β -cryptoxanthin	104.9	11.1	10%

Pro-oxidants

No dietary compounds are defined as pro-oxidants, however nutrients may have opposing actions

Predictors of Antioxidant Status in **Pregnant Women** in the US

Socioeconomic factors affecting antioxidant status in a Midwestern cohort

Food deserts

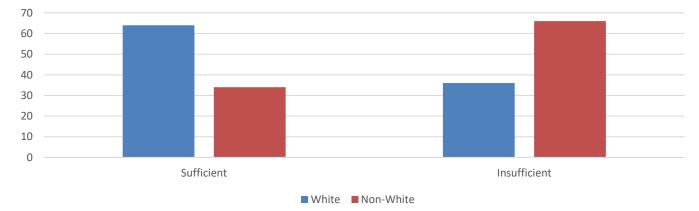
Living in a <u>food desert</u> is associated with lower serum concentrations of:

- Lycopene (399.1 v. 475.8, p=0.04)
- β-carotene (143.5 v. 228.5, p=0.005)
- β-cryptoxanthin (100.7 v. 107.4, p=0.02)

Socioeconomic factors affecting antioxidant status in a Midwestern cohort

Payor Source:

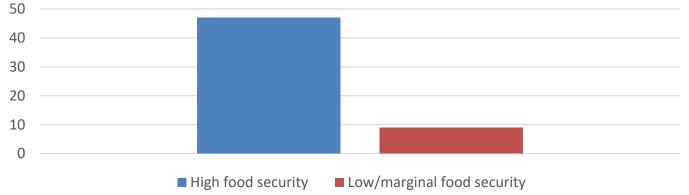
Compared to those with public insurance, those with private insurance have higher serum concentrations of:


- Lutein (184.3 v. 220.6, p=0.003)
- β-carotene (171.4 v. 282.7, p=0.01)

Socioeconomic factors affecting antioxidant status in a Midwestern cohort

Race

Proportion of vitamin E sufficiency by race in a Midwestern maternal cohort


Odds of being vitamin E deficient were 3.52 times higher for non-Whites when compared to Whites (95% CI: 1.51, 8.10; p=0.003)

Socioeconomic factors affecting carotenoid status in a Midwestern cohort

Food Security

Proportion of mothers meeting the RDA for vitamin E intake by food security status

• Marginal or low food security had 5.4 times higher odds of intakes below the RDA for vitamin E when compared to those with high food security (95% CI: 1.73. 17.0, p=0.003).

Pregnancy outcomes studied in relation to antioxidant status

Premature delivery/premature rupture of membranes

Observational Evidence

Author	Design	Year	Nutrients evaluated	Significant findings
Kramer ³	Case-control	2009	Plasma carotenoids, retinols, tocopherols	 Higher plasma α-and β-carotene, β- cryptoxanthin, and lycopene associated with reduced risk of preterm birth Higher plasma γ-tocopherol associated with increase risk of preterm birth
Carmichael ⁴	Observational cohort	2013	Intakes of multiple nutrients and 2 diet patterns	OR were above 1.5 for $\alpha\mbox{-}carotene,\beta\mbox{-}carotene,$ and vitamin E
Siega-Riz⁵	Observational cohort	2002	Intakes of vitamin C	Intakes less than the 10 th percentile were associated with twice the risk of PTD

Premature delivery/premature rupture of membranes

Supplementation Trials

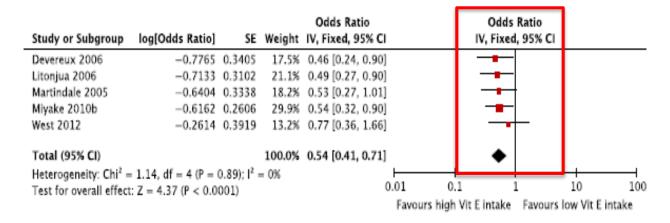
- Supplementation with 1000 mg vitamin C/400 mg vitamin E: delayed latency period after PROM compared to controls (11.2 vs. 6.2 days; p < 0.001) (in a Turkish population)⁶
- No impact on preterm birth⁷
 - However, preterm PROM occurring before 32 weeks gestation was less frequent in the women supplemented with vitamins (0.36% vs. 0.64%, p=0.046)

Preeclampsia

Observational evidence

Author	Year	Results	
Azar ⁸	2011	Serum B-carotene lower in cases	
Mikhail ⁹	1994	Serum vitamin C, β -carotene and α -tocopherol lower in cases	
Chappell ¹⁰	2002	<mark>Serum vitamin C lower in cases</mark> Serum vitamin E not different between cases and controls	
Schiff ¹¹	1996	Serum vitamin E intakes and serum levels higher in cases	
Rajasingam ¹²	2009	Vitamin C not different between cases and controls Vitamin E not different between cases and controls	
Palan ¹³	2004	Serum β -carotene, α - carotene and lycopene lower in cases	1
Roland ¹⁴	2010	Serum vitamin E higher in cases	1

Preeclampsia


Supplementation trials

- Combined 400 mg vitamin C/1000 mg vitamin E had no impact on rates of preeclampsia in women at risk^{15,16}
 - Increase the rate of babies born LBW seen in the supplemented group
 - Secondary analysis: indicated supplementation improved rates of placental abruption and preterm birth in smokers¹⁷
- Selenium supplementation decreased biomarkers of pre-eclampsia (sFlt-1) in women in the lowest tertile of selenium status¹⁸

Respiratory outcomes

Observational evidence for Vitamin E

Pooled difference for maternal dietary vitamin E intake during pregnancy and childhood wheeze.

 4/5 studies above showed no significant relationship with vitamin C (one significant association found)¹⁹

Respiratory outcomes

Supplementation Trials

- Supplementation with 1000 mg vit C and 400 mg vitamin E during pregnancy
 - Did not impact respiratory outcomes in the offspring
 - Associated with increased health care utilization (Secondary analysis of the VIP trial)²⁰

Infant growth outcomes

Results of multivariate analysis for maternal serum concentrations of total lycopene and infant growth outcomes at birth

Growth Variable (at Birth)		rnal Total copene		ternal /copene	Maternal Trans-Lycopene		
	β	p-Value	β	<i>p</i> -Value	β	<i>p</i> -Value	
Birth Weight *	0.29	0.03	0.59	0.03	0.53	0.04	
Birth Weight percentile **	0.02	0.008	0.05	0.006	0.04	0.01	
Head Circumference (cm) *	0.001	0.009	0.003	0.01	0.003	0.007	
Head Circumference ** percentile	-	-	0.04	0.05	-	-	
Length *	0.001	0.20	0.002	0.18	0.002	0.24	
Length percentile **	0.02	0.01	0.05	0.01	0.04	0.02	
	Cord Total Lycopene		Cord Cis	-Lycopene	Cord Trans-Lycopene		
Birth Weight *	-	-	-	-	-10.3	0.04	
Birth Weight percentile **	-	-			-	-	
Head Circumference (cm) *	-	-	-	-	-	-	
Head Circumference percentile **	-	-	-	-	-	-	
Length *	-	-	-	-	-	-	
Length percentile **	-	-	-	-	-	-	

* Models adjusted for gestational age and smoking; ** Models adjusted for smoking (percentile rankings are gestational age adjusted measures).

Infant growth outcomes

Maternal vitamin E isoform concentration and newborn weight, length, head circumference and percentile rakings at birth.

	Weigh	t ^a	Weight %	áile ^b	Length ^a		Length %	ile ^b	Head circum	nference ^a	Head circu	mference %ile ^b
Vitamin E isoform (µg/L)	β	р	β	р	β	р	β	р	β	р	β	р
α	-	-	0.0001	0.04	0.0001	0.03	0.0005	0.03	0.00007	0.03	0.001	0.03
γ	0.10	0.04	-	-	-	-	-	-	-	-	-	-
δ	0.47	0.02	0.02	0.05	-	-	-	-	-	-	-	-

^a Models adjusted for gestational age and smoking.

^b Models adjusted for smoking (percentile rankings are gestational age adjusted measures).

Supplementation trials

Supplementation with 400 mg vitamin C/1000 mg vitamin did not reduce the risk of intrauterine growth restriction¹⁶

Congenital heart defects

Observational evidence

- Dietary vitamin E intake was higher in cases than in controls, 13.3 (8.1–20.4) vs 12.6 (8.5–19.8) mg/day (p=0.05).
- Periconception use of vitamin E supplements in addition to a high dietary vitamin E intake above 14.9 mg/day up to nine-fold increased CHD risk²¹

Diet Patterns

Author	Diet Pattern	Year	Results
Hanson	Dietary Inflammatory Index (DII)	2019	Maternal pro-inflammatory diet associated with decreased lung function outcomes in the offspring
Sen	DII	2018	Maternal pro-inflammatory diet associated with later adiposity measures in boys
Sen	DII	2016	Maternal pro-inflammatory diet associated with impaired fetal growth and breastfeeding failure
Rifas-Shiman	Alternate Healthy Eating Index	2009	Better diet quality associated with lower screening blood glucose levels and lower risk of preeclampsia
Lange	Mediterranean diet, Alternate Healthy Eating Index	2010	Diet pattern not associated with wheeze in the offspring
Nguyen	Dutch dietary guidelines	2017	No association between diet pattern during pregnancy and atopic or allergic outcomes in childhood
Knudsen	"Western" vs "Health conscious"	2008	Health conscious diet associated with lower odds of SGA infants
Shaheen	"Processed" vs "Health conscious"	2009	No association between diet patterns and asthma or related outcomes

Summary and Conclusions

- Observational evidence shows potential associations between dietary antioxidant status and PROM, respiratory outcomes
- Supplementation trials are often conducted in replete individuals and do not show consistent benefit
- Nutrients may work synergistically, with food sources being more impactful than supplementation of individual nutrients
- Socioeconomic disparities in antioxidant status in pregnant women exist in the US

References

- 1. Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington D.C.: National Academy Press; 2000.
- 2. Brunst K, Kannan S, Ni Y, Gennings C, Ganguri H, Wright R. Validation of a Food Frequency Qustionnaire for estimating micronutrient intakes in an urban US sample of multi-ethnic pregnant women. *Matern Child Health J* 2016; 20:250-260
- 3. Kramer M, Kahn S, Platt R, Genest J, Rozen R, Chen M, Goulet L, Seguin L, Dassa C, Lydon J, McNarmara H, Dahhou M, Lamoureux J, Evans R. Antioxidan vitamins, long-chain fatty acids, and spontaneous preterm birth. *Epidemiology* 2009; 20:707-713
- 4. Carmicheal S, Yang W, Shaw G. Maternal dietary nutrient intake and risk of preterm delivery. Am J Perinatol 2013; 30(7):579-588
- 5. Siega-Riz A, Promislow J, Savitz D, Thorp J, McDonald T. Vitamin C intake and ther risk of perterm delivery. Am J Obstet Gynecol 2003; 189(2):519-525
- Gundorduk K, Asicioglu O, Gungorduk O, Yildirim G, BesimogluB, Ark C. Does vitamin C and vitamin E supplementation prolong the latency period before delivery following the preterm premature rupture of members? A randomized controlled study. Am J Perinatol 2013; 101.105/s-0033-1343774
- Hauth J, Clifton R, Roberts J, Spong C, Myatt L, Leveno K, Pearson G, Varner M, Thorp J, Mercer B, Peaceman A, Ramin S, Sciscione A, Harper M, Tolosa J, Saade G, Sorokin Y, Anderson G. Vitamin C and E supplementation to prevent spontaneous preterm birth. *Obstet Gynecol* 2010; 116(3):653-658
- 8. Azar M, Basu A, Jenkins A, Nankervis A, Hanssen K, Scholz H, Henriksen T, Garg S, Hammad S, Scardo J, Aston C, Lyons T. Serum carotenoids and fat-soluble vitamins in women with type 1 diabetes and preeclampsia. *Diabetes Care* 2011; 34(6):1258-1264
- 9. Mikhail M, Anyaegbunam A, Garfinkel, Palan P, Baru J, Romney S. Preeclampsia and antioxidant nutrients: decreased plasma levels of reduced ascorbic acid, α-tocopherol, and beta-carotene in women with preeclampsia. *Am J Obstet Gynoc* 1994; 171(1):150-157.
- 10. Chappell L, Seed P, Briley A, Kelly F, Hunt B, Charnock-Jones D, Mallet A, Poston L. An longitudinal study of biochemical vairables in women at risk of preeclampsia. *Am J Obstet Gynecol* 2002; 187(1);127-136
- 11. Schiff E, Friedman S, Stampfer M, Kao, L, Barrett P, Sibai B. Dietary consumption and plasma concentrations of vitamin E in pregnancies complicated by preeclampsia. *Am J Obstet Gynecol* 1996; 175(4):1024-1028
- 12. Rajasingam D, Seed P, Briley A, Shennan A, Poston L. A propesctive study of pregnancy outcome and biomarkers of oxidative stress in nulliparous obese women. *Am J Obstet Bynecol* 2009; 200:395e1-395.e9
- 13. Palan P, Shaban D, Martina T, Mikhail M. Lipid-soluble antioxidants and pregnancy: maternal serum levels of coenzyme Q_{10} , α -tocopherol and γ -tocopherol in preeclampsia and normal pregnancy. *Gyn Obstet Invest* 2004;58:8-13.
- 14. Roland L, Gagne A, Belanger M, Boutet M, Berthiaume L, Fraser W, Julien P, Bilodeau J. Existence of compensatory defense mechanisms against oxidative stress and hypertension in preeclampsia. *Hypertension in Pregnancy* 2010;29(1):21-37
- 15. Poston L, Seed P, Kelly F, Shennan A. Vitamin C and vitamin E in pregnant women at risk for pre-eclampsia (VIP trial): randomized placebocontrolled trial. *Lancet* 2006;367:1154-54.
- 16. Rumbold A, Crowther C, Haslam R, Deeker G, Robinson J. Vitamins C and E and the risks of preeclampsia and perinatal complications. *N Engl J Med* 2006;354:1796-806.
- 17. Abramovici A, Gandley R, Clifton R, Leveno K, Myatt L, Wapner R, Thorpe J, Mercer B, Peaceman A, Samuels P, Sciscione A, Harper M, Saade G, Sorokin Y. Prenatal vitamin C and E supplementation in smokers is associated with reduced placental abruption and preterm birth: a secondary analysis. *BJOG* 2015;122(13):1740-1747
- 18. Rayman M, Searle E, Kelly L, Sigurad J, Bodman-Smith, Bath S, Mao J, Redman Christopher. Effect of selenium on markers of risk of preeclampsia in UK pregnant women: a ransomized, controleed pitot trial. *British Journal of Nutrition* 2014; 112:99-111
- 19. Beckhaus A, Garcia-Marcos L, Forno E, Pacheco-Gonzalez R, Celedon J, Castro-Rodriquez J. Maternal nutrition during pregnancy and risk of asthma, wheeze, and atopic disease: a systematic review and meta-analysis. *Allergy* 2015; 70:1588-1604.
- 20. Greenough A, Shaheen S, Shennan, Seed P, Poston L. Respiratory outcomes in early childhood following antenatal vitamin C and E supplementation. *Thorax* 2010;65:998-1003.
- 21. Smedts H, de Vries J, Rakhshandehroo M, Wildhagen M, Verkleij-Hagoort A, Steegers E, Steeters-Theunissen R. High maternal vitamin E intake by diet or supplements is associated with congenital heart defects on the offspring. *BJOG* 2008; 116:416-423.

22. **Hanson C,** Rifas-Shiman S, Shivappa N, Writh M, Hebert J, Gold D, Camargo C, Gillman M, Sen S, Sordillo J, Oken E. Lintonjua A. Associations of prenatal dietary inflammatory potential with wheeze trajectory in Project Viva. *Journal of Allergy and Clinical Immunology in Practice* 2019 Oct 30. pii: S2213-2198(19)30899-2. doi: 10.1016/j.jaip.2019.10.010. [Epub ahead of print] PMID: 31678301

23. Sen S, Rifas-Shiman SL, Shivappa N, et al. Associations of prenatal and early life dietary inflammatory potential with childhood adiposity and cardiometabolic risk in project viva. *Pediatr Obes.* 2018;13(5):292-300.

24. Sen S, Rifas-Shiman SL, Shivappa N, et al. Dietary inflammatory potential during pregnancy is associated with lower fetal growth and breastfeeding failure: Results from project viva. *J Nutr.* 2016;146(4):728-736.

25. Rifas-Shiman S, Rich-Edwards J, Kleinman K, Oken E, Gillman M. Dietary quality during pregnancy varies by maternal characteristics in Project Viva: A US cohort. *J Am Diet Assoc* 2009; 10.1016.j.jada.2009.03.001

26. Lange NE, Rifas-Shiman SL, Camargo CA, Gold DR, Gillman MW, Litonjua AA. Maternal dietary pattern during pregnancy is not associated with recurrent wheeze in children. *J Allergy Clin Immunol*. 2010;126(2):250-5, 255.e1.

27. Nguyen A, Elbert N, Pasmans S, Kiefte-de Jong J, de Jong N, Moll H, Jaddoe V, De Jongste J, Franco O, Duijts, Voortman T. Diet quality throughout early life in relation to allergic sensitization and atopic diseases in childhood. *Nutrients* 2017; 9, 841 doi:10.3390/nu9080841

28. Knudsen V, Orozova-Bekkevold IM, Mikkelsen TB, Wolff S, Olsen S. Major dietary patterns in pregnancy and fetal growth. *Euro J Clin Nutr* 2008/;62:463-470

29. Shaheen S, Northstone K, Newson R, Emmett P, Sherriff, Henderson J. Dietary patterns in pregnancy and respiratory and atopic outcomes in childhood. *Thorax* 2009;64:411-417

BREAKTHROUGHS FOR LIFE.*

