DIETARY SUPPLEMENT USE AND ITS MICRONUTRIENT CONTRIBUTION DURING PREGNANCY AND LACTATION IN THE UNITED STATES

Data from 2 Publications

NHANES 2001 - 2014

• Usual total nutrient intakes of pregnant women in the U.S.

NHANES 1999-2014

 Dietary supplement use, product type, doses, etc.
 Pregnant
 Lactating

Bailey RL, Pac SG, Fulgoni VL, Reidy KC, Catalano PM. 2019, JAMA Network Open 2(6): e195967.

NHANES Methods

- Nationally-representative sample of U.S. residents
- In home interview

 Demographic and questionnaire collected
 Product inventory for dietary supplements
- Medical examination center • Clinical and 24-hour dietary recall
- Follow up telephone call o 24-hour dietary recall

The majority of pregnant and lactating women use dietary supplements

- •77% of pregnant women
- •70% of lactating women
- •45% of non-pregnant, non-lactating women

Bailey et al. (2019), JAMA Network Open 2(6): e195967; Jun S, Gahche JJ, Potischman N, Dwyer JT, Guenther PM, Sauder KA, et al. 2020, Obstetrics & Gynecology. doi: 10.1097/AOG.0000000000003657

Prevalence (%) of dietary supplement use by younger (20-34y) and older (35-44y) pregnant women in the United States, NHANES 1999-2014

Prevalence (%) of dietary supplement use by family income-to-poverty level among pregnant women (20-44y) in the United States, NHANES 1999-2014

Family Income-to-poverty Ratio (PIR)

PIR≤130% (n=420)
PIR 131-350% (n=419)
PIR>350% (n=379)

* Significant linear trend across PIR categories (p<.001).

Prevalence (%) of dietary supplement use by Race/ethnicity among pregnant women in the United States, NHANES 1999-2014

Race/ethnicity

- Non-Hispanic white (n=578)
- Non-Hispanic black (n=207)
- Hispanic/Mexican American (n=429)

*Estimates with different letter superscripts are significantly different at P<0.0167

Dietary Supplement Use by women (20-44y) by pregnancy and lactation status in the United States, NHANES 1999-2014

Prevalence of dietary supplement use by trimester of pregnancy among pregnant women (20-44y) in the United States, NHANES 1999-2012 (n=790)

Prevalence of reasons for dietary supplement use among pregnant and lactating women (20-44y) in the US, NHANES 2007-2014 (n=330)

Any supplement

Pregnant (n=246) Lactating (n=84)

Prenatal supplement

Percentages of women (20-44y) using dietary supplements containing specified <u>vitamins</u> by pregnancy and lactation status in the United States, NHANES 1999-2014

	Pregnant women (n=1,314)	Lactating women (n=297)	Non-pregnant and non-lactating women (n=8,096)
Vitamin A	40.3 ± 2.2 ^a	41.6 ± 3.7^{a}	22.0 ± 0.6 ^b
Thiamin	69.4 ± 2.2 ^a	63.7 ± 3.4^{a}	30.4 ± 0.7 ^b
Riboflavin	69.4 ± 2.2 ^a	63.7 ± 3.4 ^a	30.4 ± 0.7 ^b
Niacin	69.6 ± 2.2 ^a	63.9 ± 3.4 ^a	31.2 ± 0.7 ^b
Vitamin B6	72.8 ± 2.1 ^a	65.1 ± 3.4^{a}	32.7 ± 0.7 ^b
Folic acid	73.3 ± 2.1 ^a	65.1 ± 3.4^{a}	32.9 ± 0.7 ^b
Vitamin B12	69.9 ± 2.1 ^a	63.9 ± 3.5^{a}	32.9 ± 0.7 ^b
Vitamin C	73.3 ± 2.0 ^a	64.6 ± 3.4^{a}	35.5 ± 0.8 ^b
Vitamin D	71.7 ± 2.0 ^a	66.8 ± 3.3 ^a	33.1 ± 0.7 ^b
Vitamin E	72.0 ± 2.0 ^a	64.0 ± 3.5^{a}	32.6 ± 0.7 ^b
Choline	4.9 ± 1.1 ^a	7.6 ± 2.1^{a}	5.2 ± 0.3^{a}

Percentages of women (20-44y) using dietary supplements containing specified <u>minerals</u> by pregnancy and lactation status in the United States, NHANES 1999-2014

	Pregnant women (n=1,314)	Lactating women (n=297)	Non-pregnant and non-lactating women (n=8,096)
Calcium	68.1 ± 2.2^{a}	62.3 ± 3.2 ^a	32.2 ± 0.7 ^b
Iodine	20.4 ± 1.7 ^a	17.5 ± 2.5 ^a	18.2 ± 0.6 ^a
Iron	72.3 ± 2.0 ^a	65.0 ± 3.3 ^a	28.3 ± 0.7 ^b
Magnesium	28.1 ± 2.1^{a}	26.2 ± 3.8 ª	26.0 ± 0.6^{a}
Phosphorous	5.2 ± 1.0 ^a	6.2 ± 2.0 ^a	13.3 ± 0.5 ^b
Selenium	9.9 ± 1.2 ^a	11.7 ± 2.7 ^a	21.0 ± 0.6 ^b
Zinc	68.0 ± 2.2^{a}	60.6 ± 3.5 ^a	29.8 ± 0.7 ^b

*Estimates with different alphabets are significantly different at P<0.0167

Pregnant women

- median intake from dietary supplements, % of RDA and UL

Lactating women - median intake from dietary supplements, % of RDA and UL

Pregnancy Data NHANES 2001-2014

Adapted from the IOM/FNB: Dietary reference intakes applications in dietary assessment, 2000.

- Two 24-hour dietary recalls
- National Cancer Institute (NCI) method was used to produce usual intakes and prevalence of meeting/exceeding the DRI
- Estimated Average Requirement (EAR, %<EAR)
 ✓ Adequate Intake (AI, %>AI)
 ✓ Tolerable Upper Intake Level
 - (UL, %>UL)

<u>Total usual intakes</u> (foods, beverages, supplements)

% < EAR

- Magnesium (48%)
- Vitamin D (46%)
- Vitamin E (43%)
- Iron (36%)
- Vitamin A (16%)
- Folate (16%)
- Calcium (13%)
- Vitamin C (12%)
- Vitamin B6 (11%)
- Zinc (11%)

% > Adequate Intake

- Vitamin K (48%)
- Potassium (42%)
- Choline (8 %)

% > UL*

- Sodium (95%)
- Folic Acid (33%)
- Iron (28%)
- Zinc (7%)
- Calcium (3*)

* For all nutrients other than sodium UL estimates are for supplement users only Prevalence (SE) of usual nutrient intake distributions <EAR and >UL for folate/folic acid and iron stratified by dietary supplement use

Bailey et al. (2019), JAMA Network Open 2(6): e195967.

Limitations

- Small sample sizes and self-reported data
 - Total intake data for lactating women is largely unknown
- lodine contributions from foods are not available

 $_{\odot}$ NHANES 1999-2006: mean urinary iodine content was 148 µg/L, lower than WHO cut off for "insufficiency" (<150 µg/L)

Gahche JJ, Bailey RL, Mirel LB, Dwyer JT. Journal of Nutrition, 2013; 143:872-877.

Our team did not publish data on omega-3 fatty acid use or other product types

 0.6% of childbearing-age women and 7.3% of pregnant women reported use of
 DHA/EPA dietary supplements NHANES 2003-2014, no differences in DHA/EPA from
 diet alone

Thompson M, Nicholas H, [...], and Nordgren TM. Nutrients. 2019 Jan; 11(1): 177.

Summary and Conclusions

- Most pregnant and lactating women use dietary supplements
- Dietary supplement use varies by age, race/ethnicity, family income, and trimester of pregnancy
- The "doses" of micronutrients provided exhibit considerable variability
- Dietary supplements help consumers meet the recommended targets, but also contribute to potentially excessive intakes for certain nutrients

Summary and Conclusions

- Many pregnant women do not consume enough of key nutrients; specifically iron, potassium, calcium, magnesium, zinc, and vitamins A, C, D, E, K, B6, folate, and choline - even with the use of dietary supplement.
- Almost all pregnant women are at risk of excessive consumption of sodium, and many are at risk of excessive consumption of folic acid and iron, especially among dietary supplement users.
- Improved dietary guidance to help pregnant [and potentially lactating] women meet and not exceed dietary recommendations is warranted.

Thanks and Acknowledgements

- Patrick Catalano
- Johanna Dwyer
- Victor Fulgoni
- Jaime Gahche
- Patricia Guenther
- Shinyoung Jun
- Kathleen Reidy
- Susan Pac
- Nancy Potischman
- Kate Sauder

Anita Panjwani

Shinyoung Jun

Peishan Zou

