

# The Office of Radiological Security Perspective on Alternative Technology

Lance Garrison, Malika Taalbi January 30, 2020



Global Material Security





# Outline

- The risk of radiological terrorism
- The Office of Radiological Security (ORS)
- What are alternative technologies?
- ORS alternative technology strategies
  - Policy
  - Education & outreach
  - Federal incentives
  - Research, development, testing, & evaluation
- Areas of interest









# **Consequences of Radiological Terrorism**











# Nuclear vs. Radiological Terrorism Risk











# **Office of Radiological Security**

Enhance global security by preventing high-activity radioactive materials from being used in acts of terrorism.









Co-60 (Cobalt -60):

# **High Activity Sources**





| Radionuclide      | Normal Device<br>Activity (Ci) |
|-------------------|--------------------------------|
| <sup>60</sup> Co  | 1,000 - 1,000,000+             |
| <sup>241</sup> Am | 8 – 20                         |
| <sup>192</sup> lr | 10 - 100                       |
| <sup>137</sup> Cs | 1,000 – 50,000                 |



Ir-192 (Irridium-192): Radiography (industrial imaging)





#### <u>Cs-137 (Cesium-137):</u>

Teletherapy and Gamma Knife units (cancer treatment), self-shielded

and panoramic irradiators (research and sterilization)

Self-shielded irradiators (research and sterilization) and calibrators (dosimeter and detector calibration)







Am-241 (Americium-241): Oil well logging (industrial imaging)



### Global Partners (July 2019)









# **Office of Radiological Security (ORS)**

<u>MISSION</u>: The Office of Radiological Security enhances global security by preventing high activity radioactive materials from use in acts of terrorism.

### PROTECT

**PROTECT** radioactive sources used for vital medical, research, and commercial purposes



### REMOVE

**REMOVE** and dispose of disused radioactive sources



### REDUCE

**REDUCE** the global reliance on radioactive sources by promoting the adoption and development of nonradioisotopic alternative technologies











# What Are "Alternative Technologies"?

Technologies which do not contain radioactive materials that perform an equivalent (or better) function as a comparable device

Alternative technologies may emit ionizing radiation, like X-ray irradiators, or they may not, like UV pathogen reduction systems

### **Application Examples**

- Blood Irradiation
- Research Irradiation
- Sterile Insect Technique
- Food/Phytosanitary Irradiation
- Radiotherapy
- Medical Device Sterilization
- Plastic polymerization

### **Alternative Technology Examples**

- Self-shielded X-ray Irradiators (generators)
- Industrial E-Beam & X-ray Conversion
- Linear Accelerators (LINAC)
- UV Pathogen Reduction
- Neutron Generators

New applications & technologies yet to emerge...









- Greatly reduced security procedures, requirements, costs
- Elimination of terrorism risk & potential liability
- Reprieve from complicated & costly end-oflife disposition
- Potential for expanded capabilities or technical performance
- Steady device throughput—no source decay!
- Opportunities to consider upgrades as technology advances











### Should we consider an alternative technology for our facility?

### Cost

Security

Facility & Maintenance Needs

Device Preference & Training Needs

**Research or Clinical Standards** 

Operational Protocols

Technical Performance

Schedule Requirements

Government and Industry Approvals, Licensing, or Accreditations









# **Partnership Approach**

- It is necessary to assess the financial, clinical, and operational needs of the facility and its users before making the determination to switch technologies.
- Communication among multiple stakeholders ensures a successful initiative.









# **ORS Reduce Strategy**



## The ORS **<u>REDUCE</u>** Strategy:

- Supports the adoption and development of non-radioisotopic devices to achieve permanent risk reduction by reducing the footprint of risk-significant radiological materials
- Alternative technologies are commercially available for most applications of high-activity radioactive sources



13



Office of Radiological Security

Protect · Remove · Reduce





# **Outreach and Education**



Organize targeted workshops to increase awareness of security concerns and technology options



Provide educational materials via websites, email, Twitter, handouts:

- Brochures and fact sheets
- Videos





Present papers or exhibit booths at industry conferences



Meet directly with source users to discuss source security and technology options, including source alternatives









# **ORS Device Replacements: U.S.**

## **Cesium Irradiator Replacement Project**

A voluntary initiative offering financial incentives to U.S. licensees who choose to replace Cs-137 self-shielded irradiators with alternative technologies.

### Sites Receive:

- Removal of the Cs-137 device through the Off-Site Source Recovery Project (OSRP)
- A financial incentive toward the purchase price of an X-ray machine (typically 50%), paid as a reimbursement

| Initiative                  | Irradiator<br>Application | Irradiators<br>to be<br>Replaced |
|-----------------------------|---------------------------|----------------------------------|
| University of<br>California | Blood & research          | 90%                              |
| New York<br>City            | Blood &<br>Research       | 75%                              |
| Atlanta                     | Blood &<br>Research       | 66%                              |
| Vitalant                    | Blood                     | 100%                             |

#### **Progress to Date**

- **135** irradiators replaced
- **30%** of the U.S. inventory currently being replaced









- Many countries already using or transitioning to non-radioactive source-based alternative technologies, although there are continued complex challenges
- Alternative technologies are part of a comprehensive strategy for risk mitigation in radiological security & promoted in different ways internationally via regulations, legislation, or commercial measures.

Ad hoc Working Group meeting – 5<sup>th</sup> annual meeting, over 60 participants from 26 countries!

ORS works with targeted international partners to develop alternative technology consideration via political engagement, outreach, implementation, or technical exchanges.







# **Research, Studies & New Ideas**

## Collaboration with NNSA Office of Nonproliferation R&D

- Small Business Innovative Research (SBIR)
- DOE Labs, universities

### Technology research comparison studies

- Medical product materials sterilization
- Biological research
- Sterile Insect Technique

## Policy & industry landscape studies

- Cost studies, Implementation feasibility
- Technology demonstration Projects
  - Flat panel X-ray source
  - Superconducting LINAC for industrial sterilization
  - Support for radiotherapy LINAC at the IAEA











# Areas of Interest, Overall

- Awareness of technology options and their capabilities
- Understanding of technical or operational differences between technologies
- Availability of technologies deemed technically, operationally, and economically acceptable by relevant decision makers
- Infrastructure and resources necessary to sustainably maintain & operate devices with trained personnel in some environments
- Regulatory barriers for some applications
- Impact of information, resources, or policies supporting endof-life management for disused radioactive sources (or the lack thereof)







# **Device Replacement Cost Comparisons**

#### Example Costs



- Costs may not have an equal comparison.
- Cost sensitivity will depend on who is responsible for which portion of that budget. (Example: Security vs. Equipment)
- Need to consider Risk & Benefit tolerance for the operators and the organization – risk of RDD? Time or patient efficiency benefits?



### **ORS Contacts**

#### **Lance Garrison**

Domestic Alternative Technology Portfolio Manager lance.garrison@nnsa.doe.gov Office: 202-586-7449

#### Malika Taalbi

International Alternative Technology Portfolio Manager malika.taalbi@nnsa.doe.gov Office: 202-586-1130

